Metamath Proof Explorer


Theorem srngmul

Description: The involution function in a star ring distributes over multiplication, with a change in the order of the factors. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses srngcl.i ˙=*R
srngcl.b B=BaseR
srngmul.t ·˙=R
Assertion srngmul R*-RingXBYB˙X·˙Y=˙Y·˙˙X

Proof

Step Hyp Ref Expression
1 srngcl.i ˙=*R
2 srngcl.b B=BaseR
3 srngmul.t ·˙=R
4 eqid opprR=opprR
5 eqid 𝑟𝑓R=𝑟𝑓R
6 4 5 srngrhm R*-Ring𝑟𝑓RRRingHomopprR
7 eqid opprR=opprR
8 2 3 7 rhmmul 𝑟𝑓RRRingHomopprRXBYB𝑟𝑓RX·˙Y=𝑟𝑓RXopprR𝑟𝑓RY
9 6 8 syl3an1 R*-RingXBYB𝑟𝑓RX·˙Y=𝑟𝑓RXopprR𝑟𝑓RY
10 2 3 4 7 opprmul 𝑟𝑓RXopprR𝑟𝑓RY=𝑟𝑓RY·˙𝑟𝑓RX
11 9 10 eqtrdi R*-RingXBYB𝑟𝑓RX·˙Y=𝑟𝑓RY·˙𝑟𝑓RX
12 srngring R*-RingRRing
13 2 3 ringcl RRingXBYBX·˙YB
14 12 13 syl3an1 R*-RingXBYBX·˙YB
15 2 1 5 stafval X·˙YB𝑟𝑓RX·˙Y=˙X·˙Y
16 14 15 syl R*-RingXBYB𝑟𝑓RX·˙Y=˙X·˙Y
17 2 1 5 stafval YB𝑟𝑓RY=˙Y
18 17 3ad2ant3 R*-RingXBYB𝑟𝑓RY=˙Y
19 2 1 5 stafval XB𝑟𝑓RX=˙X
20 19 3ad2ant2 R*-RingXBYB𝑟𝑓RX=˙X
21 18 20 oveq12d R*-RingXBYB𝑟𝑓RY·˙𝑟𝑓RX=˙Y·˙˙X
22 11 16 21 3eqtr3d R*-RingXBYB˙X·˙Y=˙Y·˙˙X