Metamath Proof Explorer


Theorem isphl

Description: The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses isphl.v V = Base W
isphl.f F = Scalar W
isphl.h , ˙ = 𝑖 W
isphl.o 0 ˙ = 0 W
isphl.i ˙ = * F
isphl.z Z = 0 F
Assertion isphl W PreHil W LVec F *-Ring x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V ˙ x , ˙ y = y , ˙ x

Proof

Step Hyp Ref Expression
1 isphl.v V = Base W
2 isphl.f F = Scalar W
3 isphl.h , ˙ = 𝑖 W
4 isphl.o 0 ˙ = 0 W
5 isphl.i ˙ = * F
6 isphl.z Z = 0 F
7 fvexd g = W Base g V
8 fvexd g = W v = Base g 𝑖 g V
9 fvexd g = W v = Base g h = 𝑖 g Scalar g V
10 id f = Scalar g f = Scalar g
11 simpll g = W v = Base g h = 𝑖 g g = W
12 11 fveq2d g = W v = Base g h = 𝑖 g Scalar g = Scalar W
13 12 2 eqtr4di g = W v = Base g h = 𝑖 g Scalar g = F
14 10 13 sylan9eqr g = W v = Base g h = 𝑖 g f = Scalar g f = F
15 14 eleq1d g = W v = Base g h = 𝑖 g f = Scalar g f *-Ring F *-Ring
16 simpllr g = W v = Base g h = 𝑖 g f = Scalar g v = Base g
17 simplll g = W v = Base g h = 𝑖 g f = Scalar g g = W
18 17 fveq2d g = W v = Base g h = 𝑖 g f = Scalar g Base g = Base W
19 18 1 eqtr4di g = W v = Base g h = 𝑖 g f = Scalar g Base g = V
20 16 19 eqtrd g = W v = Base g h = 𝑖 g f = Scalar g v = V
21 simplr g = W v = Base g h = 𝑖 g f = Scalar g h = 𝑖 g
22 17 fveq2d g = W v = Base g h = 𝑖 g f = Scalar g 𝑖 g = 𝑖 W
23 22 3 eqtr4di g = W v = Base g h = 𝑖 g f = Scalar g 𝑖 g = , ˙
24 21 23 eqtrd g = W v = Base g h = 𝑖 g f = Scalar g h = , ˙
25 24 oveqd g = W v = Base g h = 𝑖 g f = Scalar g y h x = y , ˙ x
26 20 25 mpteq12dv g = W v = Base g h = 𝑖 g f = Scalar g y v y h x = y V y , ˙ x
27 14 fveq2d g = W v = Base g h = 𝑖 g f = Scalar g ringLMod f = ringLMod F
28 17 27 oveq12d g = W v = Base g h = 𝑖 g f = Scalar g g LMHom ringLMod f = W LMHom ringLMod F
29 26 28 eleq12d g = W v = Base g h = 𝑖 g f = Scalar g y v y h x g LMHom ringLMod f y V y , ˙ x W LMHom ringLMod F
30 24 oveqd g = W v = Base g h = 𝑖 g f = Scalar g x h x = x , ˙ x
31 14 fveq2d g = W v = Base g h = 𝑖 g f = Scalar g 0 f = 0 F
32 31 6 eqtr4di g = W v = Base g h = 𝑖 g f = Scalar g 0 f = Z
33 30 32 eqeq12d g = W v = Base g h = 𝑖 g f = Scalar g x h x = 0 f x , ˙ x = Z
34 17 fveq2d g = W v = Base g h = 𝑖 g f = Scalar g 0 g = 0 W
35 34 4 eqtr4di g = W v = Base g h = 𝑖 g f = Scalar g 0 g = 0 ˙
36 35 eqeq2d g = W v = Base g h = 𝑖 g f = Scalar g x = 0 g x = 0 ˙
37 33 36 imbi12d g = W v = Base g h = 𝑖 g f = Scalar g x h x = 0 f x = 0 g x , ˙ x = Z x = 0 ˙
38 14 fveq2d g = W v = Base g h = 𝑖 g f = Scalar g * f = * F
39 38 5 eqtr4di g = W v = Base g h = 𝑖 g f = Scalar g * f = ˙
40 24 oveqd g = W v = Base g h = 𝑖 g f = Scalar g x h y = x , ˙ y
41 39 40 fveq12d g = W v = Base g h = 𝑖 g f = Scalar g x h y * f = ˙ x , ˙ y
42 41 25 eqeq12d g = W v = Base g h = 𝑖 g f = Scalar g x h y * f = y h x ˙ x , ˙ y = y , ˙ x
43 20 42 raleqbidv g = W v = Base g h = 𝑖 g f = Scalar g y v x h y * f = y h x y V ˙ x , ˙ y = y , ˙ x
44 29 37 43 3anbi123d g = W v = Base g h = 𝑖 g f = Scalar g y v y h x g LMHom ringLMod f x h x = 0 f x = 0 g y v x h y * f = y h x y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V ˙ x , ˙ y = y , ˙ x
45 20 44 raleqbidv g = W v = Base g h = 𝑖 g f = Scalar g x v y v y h x g LMHom ringLMod f x h x = 0 f x = 0 g y v x h y * f = y h x x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V ˙ x , ˙ y = y , ˙ x
46 15 45 anbi12d g = W v = Base g h = 𝑖 g f = Scalar g f *-Ring x v y v y h x g LMHom ringLMod f x h x = 0 f x = 0 g y v x h y * f = y h x F *-Ring x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V ˙ x , ˙ y = y , ˙ x
47 9 46 sbcied g = W v = Base g h = 𝑖 g [˙ Scalar g / f]˙ f *-Ring x v y v y h x g LMHom ringLMod f x h x = 0 f x = 0 g y v x h y * f = y h x F *-Ring x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V ˙ x , ˙ y = y , ˙ x
48 8 47 sbcied g = W v = Base g [˙ 𝑖 g / h]˙ [˙ Scalar g / f]˙ f *-Ring x v y v y h x g LMHom ringLMod f x h x = 0 f x = 0 g y v x h y * f = y h x F *-Ring x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V ˙ x , ˙ y = y , ˙ x
49 7 48 sbcied g = W [˙Base g / v]˙ [˙ 𝑖 g / h]˙ [˙ Scalar g / f]˙ f *-Ring x v y v y h x g LMHom ringLMod f x h x = 0 f x = 0 g y v x h y * f = y h x F *-Ring x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V ˙ x , ˙ y = y , ˙ x
50 df-phl PreHil = g LVec | [˙Base g / v]˙ [˙ 𝑖 g / h]˙ [˙ Scalar g / f]˙ f *-Ring x v y v y h x g LMHom ringLMod f x h x = 0 f x = 0 g y v x h y * f = y h x
51 49 50 elrab2 W PreHil W LVec F *-Ring x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V ˙ x , ˙ y = y , ˙ x
52 3anass W LVec F *-Ring x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V ˙ x , ˙ y = y , ˙ x W LVec F *-Ring x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V ˙ x , ˙ y = y , ˙ x
53 51 52 bitr4i W PreHil W LVec F *-Ring x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V ˙ x , ˙ y = y , ˙ x