Description: The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011) (Revised by Mario Carneiro, 7-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isphl.v | |
|
isphl.f | |
||
isphl.h | |
||
isphl.o | |
||
isphl.i | |
||
isphl.z | |
||
Assertion | isphl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isphl.v | |
|
2 | isphl.f | |
|
3 | isphl.h | |
|
4 | isphl.o | |
|
5 | isphl.i | |
|
6 | isphl.z | |
|
7 | fvexd | |
|
8 | fvexd | |
|
9 | fvexd | |
|
10 | id | |
|
11 | simpll | |
|
12 | 11 | fveq2d | |
13 | 12 2 | eqtr4di | |
14 | 10 13 | sylan9eqr | |
15 | 14 | eleq1d | |
16 | simpllr | |
|
17 | simplll | |
|
18 | 17 | fveq2d | |
19 | 18 1 | eqtr4di | |
20 | 16 19 | eqtrd | |
21 | simplr | |
|
22 | 17 | fveq2d | |
23 | 22 3 | eqtr4di | |
24 | 21 23 | eqtrd | |
25 | 24 | oveqd | |
26 | 20 25 | mpteq12dv | |
27 | 14 | fveq2d | |
28 | 17 27 | oveq12d | |
29 | 26 28 | eleq12d | |
30 | 24 | oveqd | |
31 | 14 | fveq2d | |
32 | 31 6 | eqtr4di | |
33 | 30 32 | eqeq12d | |
34 | 17 | fveq2d | |
35 | 34 4 | eqtr4di | |
36 | 35 | eqeq2d | |
37 | 33 36 | imbi12d | |
38 | 14 | fveq2d | |
39 | 38 5 | eqtr4di | |
40 | 24 | oveqd | |
41 | 39 40 | fveq12d | |
42 | 41 25 | eqeq12d | |
43 | 20 42 | raleqbidv | |
44 | 29 37 43 | 3anbi123d | |
45 | 20 44 | raleqbidv | |
46 | 15 45 | anbi12d | |
47 | 9 46 | sbcied | |
48 | 8 47 | sbcied | |
49 | 7 48 | sbcied | |
50 | df-phl | |
|
51 | 49 50 | elrab2 | |
52 | 3anass | |
|
53 | 51 52 | bitr4i | |