Metamath Proof Explorer


Theorem isphl

Description: The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses isphl.v V=BaseW
isphl.f F=ScalarW
isphl.h ,˙=𝑖W
isphl.o 0˙=0W
isphl.i ˙=*F
isphl.z Z=0F
Assertion isphl WPreHilWLVecF*-RingxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yV˙x,˙y=y,˙x

Proof

Step Hyp Ref Expression
1 isphl.v V=BaseW
2 isphl.f F=ScalarW
3 isphl.h ,˙=𝑖W
4 isphl.o 0˙=0W
5 isphl.i ˙=*F
6 isphl.z Z=0F
7 fvexd g=WBasegV
8 fvexd g=Wv=Baseg𝑖gV
9 fvexd g=Wv=Basegh=𝑖gScalargV
10 id f=Scalargf=Scalarg
11 simpll g=Wv=Basegh=𝑖gg=W
12 11 fveq2d g=Wv=Basegh=𝑖gScalarg=ScalarW
13 12 2 eqtr4di g=Wv=Basegh=𝑖gScalarg=F
14 10 13 sylan9eqr g=Wv=Basegh=𝑖gf=Scalargf=F
15 14 eleq1d g=Wv=Basegh=𝑖gf=Scalargf*-RingF*-Ring
16 simpllr g=Wv=Basegh=𝑖gf=Scalargv=Baseg
17 simplll g=Wv=Basegh=𝑖gf=Scalargg=W
18 17 fveq2d g=Wv=Basegh=𝑖gf=ScalargBaseg=BaseW
19 18 1 eqtr4di g=Wv=Basegh=𝑖gf=ScalargBaseg=V
20 16 19 eqtrd g=Wv=Basegh=𝑖gf=Scalargv=V
21 simplr g=Wv=Basegh=𝑖gf=Scalargh=𝑖g
22 17 fveq2d g=Wv=Basegh=𝑖gf=Scalarg𝑖g=𝑖W
23 22 3 eqtr4di g=Wv=Basegh=𝑖gf=Scalarg𝑖g=,˙
24 21 23 eqtrd g=Wv=Basegh=𝑖gf=Scalargh=,˙
25 24 oveqd g=Wv=Basegh=𝑖gf=Scalargyhx=y,˙x
26 20 25 mpteq12dv g=Wv=Basegh=𝑖gf=Scalargyvyhx=yVy,˙x
27 14 fveq2d g=Wv=Basegh=𝑖gf=ScalargringLModf=ringLModF
28 17 27 oveq12d g=Wv=Basegh=𝑖gf=ScalarggLMHomringLModf=WLMHomringLModF
29 26 28 eleq12d g=Wv=Basegh=𝑖gf=ScalargyvyhxgLMHomringLModfyVy,˙xWLMHomringLModF
30 24 oveqd g=Wv=Basegh=𝑖gf=Scalargxhx=x,˙x
31 14 fveq2d g=Wv=Basegh=𝑖gf=Scalarg0f=0F
32 31 6 eqtr4di g=Wv=Basegh=𝑖gf=Scalarg0f=Z
33 30 32 eqeq12d g=Wv=Basegh=𝑖gf=Scalargxhx=0fx,˙x=Z
34 17 fveq2d g=Wv=Basegh=𝑖gf=Scalarg0g=0W
35 34 4 eqtr4di g=Wv=Basegh=𝑖gf=Scalarg0g=0˙
36 35 eqeq2d g=Wv=Basegh=𝑖gf=Scalargx=0gx=0˙
37 33 36 imbi12d g=Wv=Basegh=𝑖gf=Scalargxhx=0fx=0gx,˙x=Zx=0˙
38 14 fveq2d g=Wv=Basegh=𝑖gf=Scalarg*f=*F
39 38 5 eqtr4di g=Wv=Basegh=𝑖gf=Scalarg*f=˙
40 24 oveqd g=Wv=Basegh=𝑖gf=Scalargxhy=x,˙y
41 39 40 fveq12d g=Wv=Basegh=𝑖gf=Scalargxhy*f=˙x,˙y
42 41 25 eqeq12d g=Wv=Basegh=𝑖gf=Scalargxhy*f=yhx˙x,˙y=y,˙x
43 20 42 raleqbidv g=Wv=Basegh=𝑖gf=Scalargyvxhy*f=yhxyV˙x,˙y=y,˙x
44 29 37 43 3anbi123d g=Wv=Basegh=𝑖gf=ScalargyvyhxgLMHomringLModfxhx=0fx=0gyvxhy*f=yhxyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yV˙x,˙y=y,˙x
45 20 44 raleqbidv g=Wv=Basegh=𝑖gf=ScalargxvyvyhxgLMHomringLModfxhx=0fx=0gyvxhy*f=yhxxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yV˙x,˙y=y,˙x
46 15 45 anbi12d g=Wv=Basegh=𝑖gf=Scalargf*-RingxvyvyhxgLMHomringLModfxhx=0fx=0gyvxhy*f=yhxF*-RingxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yV˙x,˙y=y,˙x
47 9 46 sbcied g=Wv=Basegh=𝑖g[˙Scalarg/f]˙f*-RingxvyvyhxgLMHomringLModfxhx=0fx=0gyvxhy*f=yhxF*-RingxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yV˙x,˙y=y,˙x
48 8 47 sbcied g=Wv=Baseg[˙𝑖g/h]˙[˙Scalarg/f]˙f*-RingxvyvyhxgLMHomringLModfxhx=0fx=0gyvxhy*f=yhxF*-RingxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yV˙x,˙y=y,˙x
49 7 48 sbcied g=W[˙Baseg/v]˙[˙𝑖g/h]˙[˙Scalarg/f]˙f*-RingxvyvyhxgLMHomringLModfxhx=0fx=0gyvxhy*f=yhxF*-RingxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yV˙x,˙y=y,˙x
50 df-phl PreHil=gLVec|[˙Baseg/v]˙[˙𝑖g/h]˙[˙Scalarg/f]˙f*-RingxvyvyhxgLMHomringLModfxhx=0fx=0gyvxhy*f=yhx
51 49 50 elrab2 WPreHilWLVecF*-RingxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yV˙x,˙y=y,˙x
52 3anass WLVecF*-RingxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yV˙x,˙y=y,˙xWLVecF*-RingxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yV˙x,˙y=y,˙x
53 51 52 bitr4i WPreHilWLVecF*-RingxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yV˙x,˙y=y,˙x