Metamath Proof Explorer


Definition df-lvec

Description: Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring is commutative, i.e., is a field. (Contributed by NM, 11-Nov-2013)

Ref Expression
Assertion df-lvec LVec=fLMod|ScalarfDivRing

Detailed syntax breakdown

Step Hyp Ref Expression
0 clvec classLVec
1 vf setvarf
2 clmod classLMod
3 csca classScalar
4 1 cv setvarf
5 4 3 cfv classScalarf
6 cdr classDivRing
7 5 6 wcel wffScalarfDivRing
8 7 1 2 crab classfLMod|ScalarfDivRing
9 0 8 wceq wffLVec=fLMod|ScalarfDivRing