Metamath Proof Explorer


Definition df-drng

Description: Define class of all division rings. A division ring is a ring in which the set of units is exactly the nonzero elements of the ring. (Contributed by NM, 18-Oct-2012)

Ref Expression
Assertion df-drng DivRing=rRing|Unitr=Baser0r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdr classDivRing
1 vr setvarr
2 crg classRing
3 cui classUnit
4 1 cv setvarr
5 4 3 cfv classUnitr
6 cbs classBase
7 4 6 cfv classBaser
8 c0g class0𝑔
9 4 8 cfv class0r
10 9 csn class0r
11 7 10 cdif classBaser0r
12 5 11 wceq wffUnitr=Baser0r
13 12 1 2 crab classrRing|Unitr=Baser0r
14 0 13 wceq wffDivRing=rRing|Unitr=Baser0r