Metamath Proof Explorer


Definition df-drng

Description: Define class of all division rings. A division ring is a ring in which the set of units is exactly the nonzero elements of the ring. (Contributed by NM, 18-Oct-2012)

Ref Expression
Assertion df-drng
|- DivRing = { r e. Ring | ( Unit ` r ) = ( ( Base ` r ) \ { ( 0g ` r ) } ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdr
 |-  DivRing
1 vr
 |-  r
2 crg
 |-  Ring
3 cui
 |-  Unit
4 1 cv
 |-  r
5 4 3 cfv
 |-  ( Unit ` r )
6 cbs
 |-  Base
7 4 6 cfv
 |-  ( Base ` r )
8 c0g
 |-  0g
9 4 8 cfv
 |-  ( 0g ` r )
10 9 csn
 |-  { ( 0g ` r ) }
11 7 10 cdif
 |-  ( ( Base ` r ) \ { ( 0g ` r ) } )
12 5 11 wceq
 |-  ( Unit ` r ) = ( ( Base ` r ) \ { ( 0g ` r ) } )
13 12 1 2 crab
 |-  { r e. Ring | ( Unit ` r ) = ( ( Base ` r ) \ { ( 0g ` r ) } ) }
14 0 13 wceq
 |-  DivRing = { r e. Ring | ( Unit ` r ) = ( ( Base ` r ) \ { ( 0g ` r ) } ) }