Metamath Proof Explorer


Definition df-lvec

Description: Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring is commutative, i.e., is a field. (Contributed by NM, 11-Nov-2013)

Ref Expression
Assertion df-lvec LVec = f LMod | Scalar f DivRing

Detailed syntax breakdown

Step Hyp Ref Expression
0 clvec class LVec
1 vf setvar f
2 clmod class LMod
3 csca class Scalar
4 1 cv setvar f
5 4 3 cfv class Scalar f
6 cdr class DivRing
7 5 6 wcel wff Scalar f DivRing
8 7 1 2 crab class f LMod | Scalar f DivRing
9 0 8 wceq wff LVec = f LMod | Scalar f DivRing