Metamath Proof Explorer


Definition df-lvec

Description: Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring is commutative, i.e., is a field. (Contributed by NM, 11-Nov-2013)

Ref Expression
Assertion df-lvec LVec = { 𝑓 ∈ LMod ∣ ( Scalar ‘ 𝑓 ) ∈ DivRing }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clvec LVec
1 vf 𝑓
2 clmod LMod
3 csca Scalar
4 1 cv 𝑓
5 4 3 cfv ( Scalar ‘ 𝑓 )
6 cdr DivRing
7 5 6 wcel ( Scalar ‘ 𝑓 ) ∈ DivRing
8 7 1 2 crab { 𝑓 ∈ LMod ∣ ( Scalar ‘ 𝑓 ) ∈ DivRing }
9 0 8 wceq LVec = { 𝑓 ∈ LMod ∣ ( Scalar ‘ 𝑓 ) ∈ DivRing }