Metamath Proof Explorer


Theorem ssipeq

Description: The inner product on a subspace equals the inner product on the parent space. (Contributed by AV, 19-Oct-2021)

Ref Expression
Hypotheses ssipeq.x X=W𝑠U
ssipeq.i ,˙=𝑖W
ssipeq.p P=𝑖X
Assertion ssipeq USP=,˙

Proof

Step Hyp Ref Expression
1 ssipeq.x X=W𝑠U
2 ssipeq.i ,˙=𝑖W
3 ssipeq.p P=𝑖X
4 1 2 ressip US,˙=𝑖X
5 3 4 eqtr4id USP=,˙