Description: The inner product on a subspace equals the inner product on the parent space. (Contributed by AV, 19-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssipeq.x | |- X = ( W |`s U ) |
|
| ssipeq.i | |- ., = ( .i ` W ) |
||
| ssipeq.p | |- P = ( .i ` X ) |
||
| Assertion | ssipeq | |- ( U e. S -> P = ., ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssipeq.x | |- X = ( W |`s U ) |
|
| 2 | ssipeq.i | |- ., = ( .i ` W ) |
|
| 3 | ssipeq.p | |- P = ( .i ` X ) |
|
| 4 | 1 2 | ressip | |- ( U e. S -> ., = ( .i ` X ) ) |
| 5 | 3 4 | eqtr4id | |- ( U e. S -> P = ., ) |