Metamath Proof Explorer


Theorem ssipeq

Description: The inner product on a subspace equals the inner product on the parent space. (Contributed by AV, 19-Oct-2021)

Ref Expression
Hypotheses ssipeq.x โŠข ๐‘‹ = ( ๐‘Š โ†พs ๐‘ˆ )
ssipeq.i โŠข , = ( ยท๐‘– โ€˜ ๐‘Š )
ssipeq.p โŠข ๐‘ƒ = ( ยท๐‘– โ€˜ ๐‘‹ )
Assertion ssipeq ( ๐‘ˆ โˆˆ ๐‘† โ†’ ๐‘ƒ = , )

Proof

Step Hyp Ref Expression
1 ssipeq.x โŠข ๐‘‹ = ( ๐‘Š โ†พs ๐‘ˆ )
2 ssipeq.i โŠข , = ( ยท๐‘– โ€˜ ๐‘Š )
3 ssipeq.p โŠข ๐‘ƒ = ( ยท๐‘– โ€˜ ๐‘‹ )
4 1 2 ressip โŠข ( ๐‘ˆ โˆˆ ๐‘† โ†’ , = ( ยท๐‘– โ€˜ ๐‘‹ ) )
5 3 4 eqtr4id โŠข ( ๐‘ˆ โˆˆ ๐‘† โ†’ ๐‘ƒ = , )