Description: The inner product on a subspace equals the inner product on the parent space. (Contributed by AV, 19-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssipeq.x | โข ๐ = ( ๐ โพs ๐ ) | |
ssipeq.i | โข , = ( ยท๐ โ ๐ ) | ||
ssipeq.p | โข ๐ = ( ยท๐ โ ๐ ) | ||
Assertion | ssipeq | โข ( ๐ โ ๐ โ ๐ = , ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssipeq.x | โข ๐ = ( ๐ โพs ๐ ) | |
2 | ssipeq.i | โข , = ( ยท๐ โ ๐ ) | |
3 | ssipeq.p | โข ๐ = ( ยท๐ โ ๐ ) | |
4 | 1 2 | ressip | โข ( ๐ โ ๐ โ , = ( ยท๐ โ ๐ ) ) |
5 | 3 4 | eqtr4id | โข ( ๐ โ ๐ โ ๐ = , ) |