Description: "Associative" law for inner product. Conjugate version of ipassr . (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | phlsrng.f | |
|
phllmhm.h | |
||
phllmhm.v | |
||
ipdir.f | |
||
ipass.s | |
||
ipass.p | |
||
ipassr.i | |
||
Assertion | ipassr2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | |
|
2 | phllmhm.h | |
|
3 | phllmhm.v | |
|
4 | ipdir.f | |
|
5 | ipass.s | |
|
6 | ipass.p | |
|
7 | ipassr.i | |
|
8 | simpl | |
|
9 | simpr1 | |
|
10 | simpr2 | |
|
11 | 1 | phlsrng | |
12 | simpr3 | |
|
13 | 7 4 | srngcl | |
14 | 11 12 13 | syl2an2r | |
15 | 1 2 3 4 5 6 7 | ipassr | |
16 | 8 9 10 14 15 | syl13anc | |
17 | 7 4 | srngnvl | |
18 | 11 12 17 | syl2an2r | |
19 | 18 | oveq2d | |
20 | 16 19 | eqtr2d | |