Metamath Proof Explorer


Theorem ipassr2

Description: "Associative" law for inner product. Conjugate version of ipassr . (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ipdir.f K=BaseF
ipass.s ·˙=W
ipass.p ×˙=F
ipassr.i ˙=*F
Assertion ipassr2 WPreHilAVBVCKA,˙B×˙C=A,˙˙C·˙B

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ipdir.f K=BaseF
5 ipass.s ·˙=W
6 ipass.p ×˙=F
7 ipassr.i ˙=*F
8 simpl WPreHilAVBVCKWPreHil
9 simpr1 WPreHilAVBVCKAV
10 simpr2 WPreHilAVBVCKBV
11 1 phlsrng WPreHilF*-Ring
12 simpr3 WPreHilAVBVCKCK
13 7 4 srngcl F*-RingCK˙CK
14 11 12 13 syl2an2r WPreHilAVBVCK˙CK
15 1 2 3 4 5 6 7 ipassr WPreHilAVBV˙CKA,˙˙C·˙B=A,˙B×˙˙˙C
16 8 9 10 14 15 syl13anc WPreHilAVBVCKA,˙˙C·˙B=A,˙B×˙˙˙C
17 7 4 srngnvl F*-RingCK˙˙C=C
18 11 12 17 syl2an2r WPreHilAVBVCK˙˙C=C
19 18 oveq2d WPreHilAVBVCKA,˙B×˙˙˙C=A,˙B×˙C
20 16 19 eqtr2d WPreHilAVBVCKA,˙B×˙C=A,˙˙C·˙B