| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlsrng.f |
|- F = ( Scalar ` W ) |
| 2 |
|
phllmhm.h |
|- ., = ( .i ` W ) |
| 3 |
|
phllmhm.v |
|- V = ( Base ` W ) |
| 4 |
|
ipdir.f |
|- K = ( Base ` F ) |
| 5 |
|
ipass.s |
|- .x. = ( .s ` W ) |
| 6 |
|
ipass.p |
|- .X. = ( .r ` F ) |
| 7 |
|
ipassr.i |
|- .* = ( *r ` F ) |
| 8 |
|
simpl |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> W e. PreHil ) |
| 9 |
|
simpr1 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> A e. V ) |
| 10 |
|
simpr2 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> B e. V ) |
| 11 |
1
|
phlsrng |
|- ( W e. PreHil -> F e. *Ring ) |
| 12 |
|
simpr3 |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> C e. K ) |
| 13 |
7 4
|
srngcl |
|- ( ( F e. *Ring /\ C e. K ) -> ( .* ` C ) e. K ) |
| 14 |
11 12 13
|
syl2an2r |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` C ) e. K ) |
| 15 |
1 2 3 4 5 6 7
|
ipassr |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ ( .* ` C ) e. K ) ) -> ( A ., ( ( .* ` C ) .x. B ) ) = ( ( A ., B ) .X. ( .* ` ( .* ` C ) ) ) ) |
| 16 |
8 9 10 14 15
|
syl13anc |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( A ., ( ( .* ` C ) .x. B ) ) = ( ( A ., B ) .X. ( .* ` ( .* ` C ) ) ) ) |
| 17 |
7 4
|
srngnvl |
|- ( ( F e. *Ring /\ C e. K ) -> ( .* ` ( .* ` C ) ) = C ) |
| 18 |
11 12 17
|
syl2an2r |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( .* ` C ) ) = C ) |
| 19 |
18
|
oveq2d |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( A ., B ) .X. ( .* ` ( .* ` C ) ) ) = ( ( A ., B ) .X. C ) ) |
| 20 |
16 19
|
eqtr2d |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( A ., B ) .X. C ) = ( A ., ( ( .* ` C ) .x. B ) ) ) |