| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 4 |
|
ipdir.f |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
ipass.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 6 |
|
ipass.p |
⊢ × = ( .r ‘ 𝐹 ) |
| 7 |
|
ipassr.i |
⊢ ∗ = ( *𝑟 ‘ 𝐹 ) |
| 8 |
|
simpl |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝑊 ∈ PreHil ) |
| 9 |
|
simpr1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐴 ∈ 𝑉 ) |
| 10 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐵 ∈ 𝑉 ) |
| 11 |
1
|
phlsrng |
⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
| 12 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐶 ∈ 𝐾 ) |
| 13 |
7 4
|
srngcl |
⊢ ( ( 𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾 ) → ( ∗ ‘ 𝐶 ) ∈ 𝐾 ) |
| 14 |
11 12 13
|
syl2an2r |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ 𝐶 ) ∈ 𝐾 ) |
| 15 |
1 2 3 4 5 6 7
|
ipassr |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ ( ∗ ‘ 𝐶 ) ∈ 𝐾 ) ) → ( 𝐴 , ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) × ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) ) ) |
| 16 |
8 9 10 14 15
|
syl13anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( 𝐴 , ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) × ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) ) ) |
| 17 |
7 4
|
srngnvl |
⊢ ( ( 𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾 ) → ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) = 𝐶 ) |
| 18 |
11 12 17
|
syl2an2r |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) = 𝐶 ) |
| 19 |
18
|
oveq2d |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝐴 , 𝐵 ) × ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) ) = ( ( 𝐴 , 𝐵 ) × 𝐶 ) ) |
| 20 |
16 19
|
eqtr2d |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝐴 , 𝐵 ) × 𝐶 ) = ( 𝐴 , ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) |