| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 4 |
|
ipdir.f |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
ipass.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 6 |
|
ipass.p |
⊢ × = ( .r ‘ 𝐹 ) |
| 7 |
|
ipassr.i |
⊢ ∗ = ( *𝑟 ‘ 𝐹 ) |
| 8 |
|
simpl |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝑊 ∈ PreHil ) |
| 9 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐶 ∈ 𝐾 ) |
| 10 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐵 ∈ 𝑉 ) |
| 11 |
|
simpr1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐴 ∈ 𝑉 ) |
| 12 |
1 2 3 4 5 6
|
ipass |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) → ( ( 𝐶 · 𝐵 ) , 𝐴 ) = ( 𝐶 × ( 𝐵 , 𝐴 ) ) ) |
| 13 |
8 9 10 11 12
|
syl13anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝐶 · 𝐵 ) , 𝐴 ) = ( 𝐶 × ( 𝐵 , 𝐴 ) ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ ( ( 𝐶 · 𝐵 ) , 𝐴 ) ) = ( ∗ ‘ ( 𝐶 × ( 𝐵 , 𝐴 ) ) ) ) |
| 15 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝑊 ∈ LMod ) |
| 17 |
3 1 5 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐶 · 𝐵 ) ∈ 𝑉 ) |
| 18 |
16 9 10 17
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( 𝐶 · 𝐵 ) ∈ 𝑉 ) |
| 19 |
1 2 3 7
|
ipcj |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐶 · 𝐵 ) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ∗ ‘ ( ( 𝐶 · 𝐵 ) , 𝐴 ) ) = ( 𝐴 , ( 𝐶 · 𝐵 ) ) ) |
| 20 |
8 18 11 19
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ ( ( 𝐶 · 𝐵 ) , 𝐴 ) ) = ( 𝐴 , ( 𝐶 · 𝐵 ) ) ) |
| 21 |
1
|
phlsrng |
⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐹 ∈ *-Ring ) |
| 23 |
1 2 3 4
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 , 𝐴 ) ∈ 𝐾 ) |
| 24 |
8 10 11 23
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( 𝐵 , 𝐴 ) ∈ 𝐾 ) |
| 25 |
7 4 6
|
srngmul |
⊢ ( ( 𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾 ∧ ( 𝐵 , 𝐴 ) ∈ 𝐾 ) → ( ∗ ‘ ( 𝐶 × ( 𝐵 , 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 , 𝐴 ) ) × ( ∗ ‘ 𝐶 ) ) ) |
| 26 |
22 9 24 25
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ ( 𝐶 × ( 𝐵 , 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 , 𝐴 ) ) × ( ∗ ‘ 𝐶 ) ) ) |
| 27 |
14 20 26
|
3eqtr3d |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( 𝐴 , ( 𝐶 · 𝐵 ) ) = ( ( ∗ ‘ ( 𝐵 , 𝐴 ) ) × ( ∗ ‘ 𝐶 ) ) ) |
| 28 |
1 2 3 7
|
ipcj |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐵 , 𝐴 ) ) = ( 𝐴 , 𝐵 ) ) |
| 29 |
8 10 11 28
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ ( 𝐵 , 𝐴 ) ) = ( 𝐴 , 𝐵 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( ∗ ‘ ( 𝐵 , 𝐴 ) ) × ( ∗ ‘ 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) × ( ∗ ‘ 𝐶 ) ) ) |
| 31 |
27 30
|
eqtrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( 𝐴 , ( 𝐶 · 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) × ( ∗ ‘ 𝐶 ) ) ) |