| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 4 |
|
ipdir.f |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
ipass.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 6 |
|
ipass.p |
⊢ × = ( .r ‘ 𝐹 ) |
| 7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) |
| 8 |
1 2 3 7
|
phllmhm |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 9 |
8
|
3ad2antr3 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 10 |
|
simpr1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐾 ) |
| 11 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) |
| 12 |
|
rlmvsca |
⊢ ( .r ‘ 𝐹 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐹 ) ) |
| 13 |
6 12
|
eqtri |
⊢ × = ( ·𝑠 ‘ ( ringLMod ‘ 𝐹 ) ) |
| 14 |
1 4 3 5 13
|
lmhmlin |
⊢ ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 × ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) ) |
| 15 |
9 10 11 14
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 × ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) ) |
| 16 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 18 |
3 1 5 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 · 𝐵 ) ∈ 𝑉 ) |
| 19 |
17 10 11 18
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 · 𝐵 ) ∈ 𝑉 ) |
| 20 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐴 · 𝐵 ) → ( 𝑥 , 𝐶 ) = ( ( 𝐴 · 𝐵 ) , 𝐶 ) ) |
| 21 |
|
ovex |
⊢ ( 𝑥 , 𝐶 ) ∈ V |
| 22 |
20 7 21
|
fvmpt3i |
⊢ ( ( 𝐴 · 𝐵 ) ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐴 · 𝐵 ) , 𝐶 ) ) |
| 23 |
19 22
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐴 · 𝐵 ) , 𝐶 ) ) |
| 24 |
|
oveq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 , 𝐶 ) = ( 𝐵 , 𝐶 ) ) |
| 25 |
24 7 21
|
fvmpt3i |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) = ( 𝐵 , 𝐶 ) ) |
| 26 |
11 25
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) = ( 𝐵 , 𝐶 ) ) |
| 27 |
26
|
oveq2d |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 × ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) = ( 𝐴 × ( 𝐵 , 𝐶 ) ) ) |
| 28 |
15 23 27
|
3eqtr3d |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 × ( 𝐵 , 𝐶 ) ) ) |