Metamath Proof Explorer


Theorem phllmhm

Description: The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f 𝐹 = ( Scalar ‘ 𝑊 )
phllmhm.h , = ( ·𝑖𝑊 )
phllmhm.v 𝑉 = ( Base ‘ 𝑊 )
phllmhm.g 𝐺 = ( 𝑥𝑉 ↦ ( 𝑥 , 𝐴 ) )
Assertion phllmhm ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → 𝐺 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 phlsrng.f 𝐹 = ( Scalar ‘ 𝑊 )
2 phllmhm.h , = ( ·𝑖𝑊 )
3 phllmhm.v 𝑉 = ( Base ‘ 𝑊 )
4 phllmhm.g 𝐺 = ( 𝑥𝑉 ↦ ( 𝑥 , 𝐴 ) )
5 eqid ( 0g𝑊 ) = ( 0g𝑊 )
6 eqid ( *𝑟𝐹 ) = ( *𝑟𝐹 )
7 eqid ( 0g𝐹 ) = ( 0g𝐹 )
8 3 1 2 5 6 7 isphl ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑦𝑉 ( ( 𝑥𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g𝐹 ) → 𝑦 = ( 0g𝑊 ) ) ∧ ∀ 𝑥𝑉 ( ( *𝑟𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) ) )
9 8 simp3bi ( 𝑊 ∈ PreHil → ∀ 𝑦𝑉 ( ( 𝑥𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g𝐹 ) → 𝑦 = ( 0g𝑊 ) ) ∧ ∀ 𝑥𝑉 ( ( *𝑟𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) )
10 simp1 ( ( ( 𝑥𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g𝐹 ) → 𝑦 = ( 0g𝑊 ) ) ∧ ∀ 𝑥𝑉 ( ( *𝑟𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) → ( 𝑥𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) )
11 10 ralimi ( ∀ 𝑦𝑉 ( ( 𝑥𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g𝐹 ) → 𝑦 = ( 0g𝑊 ) ) ∧ ∀ 𝑥𝑉 ( ( *𝑟𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) → ∀ 𝑦𝑉 ( 𝑥𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) )
12 9 11 syl ( 𝑊 ∈ PreHil → ∀ 𝑦𝑉 ( 𝑥𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) )
13 oveq2 ( 𝑦 = 𝐴 → ( 𝑥 , 𝑦 ) = ( 𝑥 , 𝐴 ) )
14 13 mpteq2dv ( 𝑦 = 𝐴 → ( 𝑥𝑉 ↦ ( 𝑥 , 𝑦 ) ) = ( 𝑥𝑉 ↦ ( 𝑥 , 𝐴 ) ) )
15 14 4 eqtr4di ( 𝑦 = 𝐴 → ( 𝑥𝑉 ↦ ( 𝑥 , 𝑦 ) ) = 𝐺 )
16 15 eleq1d ( 𝑦 = 𝐴 → ( ( 𝑥𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ↔ 𝐺 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) )
17 16 rspccva ( ( ∀ 𝑦𝑉 ( 𝑥𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ 𝐴𝑉 ) → 𝐺 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) )
18 12 17 sylan ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → 𝐺 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) )