Metamath Proof Explorer


Theorem ipffval

Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses ipffval.1 𝑉 = ( Base ‘ 𝑊 )
ipffval.2 , = ( ·𝑖𝑊 )
ipffval.3 · = ( ·if𝑊 )
Assertion ipffval · = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( 𝑥 , 𝑦 ) )

Proof

Step Hyp Ref Expression
1 ipffval.1 𝑉 = ( Base ‘ 𝑊 )
2 ipffval.2 , = ( ·𝑖𝑊 )
3 ipffval.3 · = ( ·if𝑊 )
4 fveq2 ( 𝑔 = 𝑊 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝑊 ) )
5 4 1 eqtr4di ( 𝑔 = 𝑊 → ( Base ‘ 𝑔 ) = 𝑉 )
6 fveq2 ( 𝑔 = 𝑊 → ( ·𝑖𝑔 ) = ( ·𝑖𝑊 ) )
7 6 2 eqtr4di ( 𝑔 = 𝑊 → ( ·𝑖𝑔 ) = , )
8 7 oveqd ( 𝑔 = 𝑊 → ( 𝑥 ( ·𝑖𝑔 ) 𝑦 ) = ( 𝑥 , 𝑦 ) )
9 5 5 8 mpoeq123dv ( 𝑔 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑔 ) , 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑥 ( ·𝑖𝑔 ) 𝑦 ) ) = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( 𝑥 , 𝑦 ) ) )
10 df-ipf ·if = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) , 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑥 ( ·𝑖𝑔 ) 𝑦 ) ) )
11 1 fvexi 𝑉 ∈ V
12 2 fvexi , ∈ V
13 12 rnex ran , ∈ V
14 p0ex { ∅ } ∈ V
15 13 14 unex ( ran , ∪ { ∅ } ) ∈ V
16 df-ov ( 𝑥 , 𝑦 ) = ( , ‘ ⟨ 𝑥 , 𝑦 ⟩ )
17 fvrn0 ( , ‘ ⟨ 𝑥 , 𝑦 ⟩ ) ∈ ( ran , ∪ { ∅ } )
18 16 17 eqeltri ( 𝑥 , 𝑦 ) ∈ ( ran , ∪ { ∅ } )
19 18 rgen2w 𝑥𝑉𝑦𝑉 ( 𝑥 , 𝑦 ) ∈ ( ran , ∪ { ∅ } )
20 11 11 15 19 mpoexw ( 𝑥𝑉 , 𝑦𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ V
21 9 10 20 fvmpt ( 𝑊 ∈ V → ( ·if𝑊 ) = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( 𝑥 , 𝑦 ) ) )
22 fvprc ( ¬ 𝑊 ∈ V → ( ·if𝑊 ) = ∅ )
23 fvprc ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ )
24 1 23 syl5eq ( ¬ 𝑊 ∈ V → 𝑉 = ∅ )
25 24 olcd ( ¬ 𝑊 ∈ V → ( 𝑉 = ∅ ∨ 𝑉 = ∅ ) )
26 0mpo0 ( ( 𝑉 = ∅ ∨ 𝑉 = ∅ ) → ( 𝑥𝑉 , 𝑦𝑉 ↦ ( 𝑥 , 𝑦 ) ) = ∅ )
27 25 26 syl ( ¬ 𝑊 ∈ V → ( 𝑥𝑉 , 𝑦𝑉 ↦ ( 𝑥 , 𝑦 ) ) = ∅ )
28 22 27 eqtr4d ( ¬ 𝑊 ∈ V → ( ·if𝑊 ) = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( 𝑥 , 𝑦 ) ) )
29 21 28 pm2.61i ( ·if𝑊 ) = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( 𝑥 , 𝑦 ) )
30 3 29 eqtri · = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( 𝑥 , 𝑦 ) )