| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipffval.1 |
|- V = ( Base ` W ) |
| 2 |
|
ipffval.2 |
|- ., = ( .i ` W ) |
| 3 |
|
ipffval.3 |
|- .x. = ( .if ` W ) |
| 4 |
|
fveq2 |
|- ( g = W -> ( Base ` g ) = ( Base ` W ) ) |
| 5 |
4 1
|
eqtr4di |
|- ( g = W -> ( Base ` g ) = V ) |
| 6 |
|
fveq2 |
|- ( g = W -> ( .i ` g ) = ( .i ` W ) ) |
| 7 |
6 2
|
eqtr4di |
|- ( g = W -> ( .i ` g ) = ., ) |
| 8 |
7
|
oveqd |
|- ( g = W -> ( x ( .i ` g ) y ) = ( x ., y ) ) |
| 9 |
5 5 8
|
mpoeq123dv |
|- ( g = W -> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( .i ` g ) y ) ) = ( x e. V , y e. V |-> ( x ., y ) ) ) |
| 10 |
|
df-ipf |
|- .if = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( .i ` g ) y ) ) ) |
| 11 |
1
|
fvexi |
|- V e. _V |
| 12 |
2
|
fvexi |
|- ., e. _V |
| 13 |
12
|
rnex |
|- ran ., e. _V |
| 14 |
|
p0ex |
|- { (/) } e. _V |
| 15 |
13 14
|
unex |
|- ( ran ., u. { (/) } ) e. _V |
| 16 |
|
df-ov |
|- ( x ., y ) = ( ., ` <. x , y >. ) |
| 17 |
|
fvrn0 |
|- ( ., ` <. x , y >. ) e. ( ran ., u. { (/) } ) |
| 18 |
16 17
|
eqeltri |
|- ( x ., y ) e. ( ran ., u. { (/) } ) |
| 19 |
18
|
rgen2w |
|- A. x e. V A. y e. V ( x ., y ) e. ( ran ., u. { (/) } ) |
| 20 |
11 11 15 19
|
mpoexw |
|- ( x e. V , y e. V |-> ( x ., y ) ) e. _V |
| 21 |
9 10 20
|
fvmpt |
|- ( W e. _V -> ( .if ` W ) = ( x e. V , y e. V |-> ( x ., y ) ) ) |
| 22 |
|
fvprc |
|- ( -. W e. _V -> ( .if ` W ) = (/) ) |
| 23 |
|
fvprc |
|- ( -. W e. _V -> ( Base ` W ) = (/) ) |
| 24 |
1 23
|
eqtrid |
|- ( -. W e. _V -> V = (/) ) |
| 25 |
24
|
olcd |
|- ( -. W e. _V -> ( V = (/) \/ V = (/) ) ) |
| 26 |
|
0mpo0 |
|- ( ( V = (/) \/ V = (/) ) -> ( x e. V , y e. V |-> ( x ., y ) ) = (/) ) |
| 27 |
25 26
|
syl |
|- ( -. W e. _V -> ( x e. V , y e. V |-> ( x ., y ) ) = (/) ) |
| 28 |
22 27
|
eqtr4d |
|- ( -. W e. _V -> ( .if ` W ) = ( x e. V , y e. V |-> ( x ., y ) ) ) |
| 29 |
21 28
|
pm2.61i |
|- ( .if ` W ) = ( x e. V , y e. V |-> ( x ., y ) ) |
| 30 |
3 29
|
eqtri |
|- .x. = ( x e. V , y e. V |-> ( x ., y ) ) |