Metamath Proof Explorer


Theorem mpoeq123dv

Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011)

Ref Expression
Hypotheses mpoeq123dv.1
|- ( ph -> A = D )
mpoeq123dv.2
|- ( ph -> B = E )
mpoeq123dv.3
|- ( ph -> C = F )
Assertion mpoeq123dv
|- ( ph -> ( x e. A , y e. B |-> C ) = ( x e. D , y e. E |-> F ) )

Proof

Step Hyp Ref Expression
1 mpoeq123dv.1
 |-  ( ph -> A = D )
2 mpoeq123dv.2
 |-  ( ph -> B = E )
3 mpoeq123dv.3
 |-  ( ph -> C = F )
4 2 adantr
 |-  ( ( ph /\ x e. A ) -> B = E )
5 3 adantr
 |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> C = F )
6 1 4 5 mpoeq123dva
 |-  ( ph -> ( x e. A , y e. B |-> C ) = ( x e. D , y e. E |-> F ) )