Metamath Proof Explorer


Theorem mpoeq123dv

Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011)

Ref Expression
Hypotheses mpoeq123dv.1 ( 𝜑𝐴 = 𝐷 )
mpoeq123dv.2 ( 𝜑𝐵 = 𝐸 )
mpoeq123dv.3 ( 𝜑𝐶 = 𝐹 )
Assertion mpoeq123dv ( 𝜑 → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐷 , 𝑦𝐸𝐹 ) )

Proof

Step Hyp Ref Expression
1 mpoeq123dv.1 ( 𝜑𝐴 = 𝐷 )
2 mpoeq123dv.2 ( 𝜑𝐵 = 𝐸 )
3 mpoeq123dv.3 ( 𝜑𝐶 = 𝐹 )
4 2 adantr ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐸 )
5 3 adantr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝐶 = 𝐹 )
6 1 4 5 mpoeq123dva ( 𝜑 → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐷 , 𝑦𝐸𝐹 ) )