Metamath Proof Explorer


Theorem mpoexw

Description: Weak version of mpoex that holds without ax-rep . If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023)

Ref Expression
Hypotheses mpoexw.1 𝐴 ∈ V
mpoexw.2 𝐵 ∈ V
mpoexw.3 𝐷 ∈ V
mpoexw.4 𝑥𝐴𝑦𝐵 𝐶𝐷
Assertion mpoexw ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ∈ V

Proof

Step Hyp Ref Expression
1 mpoexw.1 𝐴 ∈ V
2 mpoexw.2 𝐵 ∈ V
3 mpoexw.3 𝐷 ∈ V
4 mpoexw.4 𝑥𝐴𝑦𝐵 𝐶𝐷
5 eqid ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
6 5 mpofun Fun ( 𝑥𝐴 , 𝑦𝐵𝐶 )
7 5 dmmpoga ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝐷 → dom ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝐴 × 𝐵 ) )
8 4 7 ax-mp dom ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝐴 × 𝐵 )
9 1 2 xpex ( 𝐴 × 𝐵 ) ∈ V
10 8 9 eqeltri dom ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ∈ V
11 5 rnmpo ran ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = 𝐶 }
12 4 rspec ( 𝑥𝐴 → ∀ 𝑦𝐵 𝐶𝐷 )
13 12 r19.21bi ( ( 𝑥𝐴𝑦𝐵 ) → 𝐶𝐷 )
14 eleq1a ( 𝐶𝐷 → ( 𝑧 = 𝐶𝑧𝐷 ) )
15 13 14 syl ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑧 = 𝐶𝑧𝐷 ) )
16 15 rexlimdva ( 𝑥𝐴 → ( ∃ 𝑦𝐵 𝑧 = 𝐶𝑧𝐷 ) )
17 16 rexlimiv ( ∃ 𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝑧𝐷 )
18 17 abssi { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = 𝐶 } ⊆ 𝐷
19 3 18 ssexi { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = 𝐶 } ∈ V
20 11 19 eqeltri ran ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ∈ V
21 funexw ( ( Fun ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ∧ dom ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ∈ V ∧ ran ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ∈ V ) → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ∈ V )
22 6 10 20 21 mp3an ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ∈ V