Metamath Proof Explorer


Theorem mpoex

Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypotheses mpoex.1 𝐴 ∈ V
mpoex.2 𝐵 ∈ V
Assertion mpoex ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ∈ V

Proof

Step Hyp Ref Expression
1 mpoex.1 𝐴 ∈ V
2 mpoex.2 𝐵 ∈ V
3 2 rgenw 𝑥𝐴 𝐵 ∈ V
4 eqid ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
5 4 mpoexxg ( ( 𝐴 ∈ V ∧ ∀ 𝑥𝐴 𝐵 ∈ V ) → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ∈ V )
6 1 3 5 mp2an ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ∈ V