Metamath Proof Explorer


Theorem mpoex

Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypotheses mpoex.1
|- A e. _V
mpoex.2
|- B e. _V
Assertion mpoex
|- ( x e. A , y e. B |-> C ) e. _V

Proof

Step Hyp Ref Expression
1 mpoex.1
 |-  A e. _V
2 mpoex.2
 |-  B e. _V
3 2 rgenw
 |-  A. x e. A B e. _V
4 eqid
 |-  ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> C )
5 4 mpoexxg
 |-  ( ( A e. _V /\ A. x e. A B e. _V ) -> ( x e. A , y e. B |-> C ) e. _V )
6 1 3 5 mp2an
 |-  ( x e. A , y e. B |-> C ) e. _V