| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srngcl.i |
|- .* = ( *r ` R ) |
| 2 |
|
srngcl.b |
|- B = ( Base ` R ) |
| 3 |
|
eqid |
|- ( *rf ` R ) = ( *rf ` R ) |
| 4 |
2 1 3
|
stafval |
|- ( X e. B -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
| 5 |
4
|
adantl |
|- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
| 6 |
3 2
|
srngf1o |
|- ( R e. *Ring -> ( *rf ` R ) : B -1-1-onto-> B ) |
| 7 |
|
f1of |
|- ( ( *rf ` R ) : B -1-1-onto-> B -> ( *rf ` R ) : B --> B ) |
| 8 |
6 7
|
syl |
|- ( R e. *Ring -> ( *rf ` R ) : B --> B ) |
| 9 |
8
|
ffvelcdmda |
|- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` X ) e. B ) |
| 10 |
5 9
|
eqeltrrd |
|- ( ( R e. *Ring /\ X e. B ) -> ( .* ` X ) e. B ) |