| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srngcnv.i |
|- .* = ( *rf ` R ) |
| 2 |
|
srngf1o.b |
|- B = ( Base ` R ) |
| 3 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 4 |
3 1
|
srngrhm |
|- ( R e. *Ring -> .* e. ( R RingHom ( oppR ` R ) ) ) |
| 5 |
|
eqid |
|- ( Base ` ( oppR ` R ) ) = ( Base ` ( oppR ` R ) ) |
| 6 |
2 5
|
rhmf |
|- ( .* e. ( R RingHom ( oppR ` R ) ) -> .* : B --> ( Base ` ( oppR ` R ) ) ) |
| 7 |
|
ffn |
|- ( .* : B --> ( Base ` ( oppR ` R ) ) -> .* Fn B ) |
| 8 |
4 6 7
|
3syl |
|- ( R e. *Ring -> .* Fn B ) |
| 9 |
1
|
srngcnv |
|- ( R e. *Ring -> .* = `' .* ) |
| 10 |
9
|
fneq1d |
|- ( R e. *Ring -> ( .* Fn B <-> `' .* Fn B ) ) |
| 11 |
8 10
|
mpbid |
|- ( R e. *Ring -> `' .* Fn B ) |
| 12 |
|
dff1o4 |
|- ( .* : B -1-1-onto-> B <-> ( .* Fn B /\ `' .* Fn B ) ) |
| 13 |
8 11 12
|
sylanbrc |
|- ( R e. *Ring -> .* : B -1-1-onto-> B ) |