| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlpropd.1 |
|
| 2 |
|
phlpropd.2 |
|
| 3 |
|
phlpropd.3 |
|
| 4 |
|
phlpropd.4 |
|
| 5 |
|
phlpropd.5 |
|
| 6 |
|
phlpropd.6 |
|
| 7 |
|
phlpropd.7 |
|
| 8 |
|
phlpropd.8 |
|
| 9 |
1 2 3 4 5 6 7
|
lvecpropd |
|
| 10 |
4 5
|
eqtr3d |
|
| 11 |
10
|
eleq1d |
|
| 12 |
8
|
oveqrspc2v |
|
| 13 |
12
|
anass1rs |
|
| 14 |
13
|
mpteq2dva |
|
| 15 |
1
|
adantr |
|
| 16 |
15
|
mpteq1d |
|
| 17 |
2
|
adantr |
|
| 18 |
17
|
mpteq1d |
|
| 19 |
14 16 18
|
3eqtr3d |
|
| 20 |
|
rlmbas |
|
| 21 |
6 20
|
eqtri |
|
| 22 |
21
|
a1i |
|
| 23 |
|
fvex |
|
| 24 |
4 23
|
eqeltrdi |
|
| 25 |
|
rlmsca |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
eqidd |
|
| 28 |
|
eqidd |
|
| 29 |
1 22 2 22 4 26 5 26 6 6 3 27 7 28
|
lmhmpropd |
|
| 30 |
4
|
fveq2d |
|
| 31 |
30
|
oveq2d |
|
| 32 |
5
|
fveq2d |
|
| 33 |
32
|
oveq2d |
|
| 34 |
29 31 33
|
3eqtr3d |
|
| 35 |
34
|
adantr |
|
| 36 |
19 35
|
eleq12d |
|
| 37 |
8
|
oveqrspc2v |
|
| 38 |
37
|
anabsan2 |
|
| 39 |
10
|
fveq2d |
|
| 40 |
39
|
adantr |
|
| 41 |
38 40
|
eqeq12d |
|
| 42 |
1 2 3
|
grpidpropd |
|
| 43 |
42
|
adantr |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
41 44
|
imbi12d |
|
| 46 |
10
|
fveq2d |
|
| 47 |
46
|
adantr |
|
| 48 |
8
|
oveqrspc2v |
|
| 49 |
47 48
|
fveq12d |
|
| 50 |
49
|
anassrs |
|
| 51 |
50 13
|
eqeq12d |
|
| 52 |
51
|
ralbidva |
|
| 53 |
15
|
raleqdv |
|
| 54 |
17
|
raleqdv |
|
| 55 |
52 53 54
|
3bitr3d |
|
| 56 |
36 45 55
|
3anbi123d |
|
| 57 |
56
|
ralbidva |
|
| 58 |
1
|
raleqdv |
|
| 59 |
2
|
raleqdv |
|
| 60 |
57 58 59
|
3bitr3d |
|
| 61 |
9 11 60
|
3anbi123d |
|
| 62 |
|
eqid |
|
| 63 |
|
eqid |
|
| 64 |
|
eqid |
|
| 65 |
|
eqid |
|
| 66 |
|
eqid |
|
| 67 |
|
eqid |
|
| 68 |
62 63 64 65 66 67
|
isphl |
|
| 69 |
|
eqid |
|
| 70 |
|
eqid |
|
| 71 |
|
eqid |
|
| 72 |
|
eqid |
|
| 73 |
|
eqid |
|
| 74 |
|
eqid |
|
| 75 |
69 70 71 72 73 74
|
isphl |
|
| 76 |
61 68 75
|
3bitr4g |
|