| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
phlpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
phlpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 4 |
|
phlpropd.4 |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐾 ) ) |
| 5 |
|
phlpropd.5 |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐿 ) ) |
| 6 |
|
phlpropd.6 |
⊢ 𝑃 = ( Base ‘ 𝐹 ) |
| 7 |
|
phlpropd.7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) |
| 8 |
|
phlpropd.8 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝐿 ) 𝑦 ) ) |
| 9 |
1 2 3 4 5 6 7
|
lvecpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ LVec ↔ 𝐿 ∈ LVec ) ) |
| 10 |
4 5
|
eqtr3d |
⊢ ( 𝜑 → ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐿 ) ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝜑 → ( ( Scalar ‘ 𝐾 ) ∈ *-Ring ↔ ( Scalar ‘ 𝐿 ) ∈ *-Ring ) ) |
| 12 |
8
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) → ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) |
| 13 |
12
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) |
| 14 |
13
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐵 ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) = ( 𝑏 ∈ 𝐵 ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 16 |
15
|
mpteq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐵 ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) = ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) |
| 17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 18 |
17
|
mpteq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐵 ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) = ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 19 |
14 16 18
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) = ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 20 |
|
rlmbas |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ ( ringLMod ‘ 𝐹 ) ) |
| 21 |
6 20
|
eqtri |
⊢ 𝑃 = ( Base ‘ ( ringLMod ‘ 𝐹 ) ) |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( ringLMod ‘ 𝐹 ) ) ) |
| 23 |
|
fvex |
⊢ ( Scalar ‘ 𝐾 ) ∈ V |
| 24 |
4 23
|
eqeltrdi |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 25 |
|
rlmsca |
⊢ ( 𝐹 ∈ V → 𝐹 = ( Scalar ‘ ( ringLMod ‘ 𝐹 ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ ( ringLMod ‘ 𝐹 ) ) ) |
| 27 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 ) ) |
| 28 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 ) ) |
| 29 |
1 22 2 22 4 26 5 26 6 6 3 27 7 28
|
lmhmpropd |
⊢ ( 𝜑 → ( 𝐾 LMHom ( ringLMod ‘ 𝐹 ) ) = ( 𝐿 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 30 |
4
|
fveq2d |
⊢ ( 𝜑 → ( ringLMod ‘ 𝐹 ) = ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) |
| 31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( 𝐾 LMHom ( ringLMod ‘ 𝐹 ) ) = ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ) |
| 32 |
5
|
fveq2d |
⊢ ( 𝜑 → ( ringLMod ‘ 𝐹 ) = ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝜑 → ( 𝐿 LMHom ( ringLMod ‘ 𝐹 ) ) = ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) |
| 34 |
29 31 33
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) = ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) = ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) |
| 36 |
19 35
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ↔ ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) ) |
| 37 |
8
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) |
| 38 |
37
|
anabsan2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) |
| 39 |
10
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐾 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 0g ‘ ( Scalar ‘ 𝐾 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 41 |
38 40
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) ↔ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) ) |
| 42 |
1 2 3
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 44 |
43
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 = ( 0g ‘ 𝐾 ) ↔ 𝑎 = ( 0g ‘ 𝐿 ) ) ) |
| 45 |
41 44
|
imbi12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ↔ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ) ) |
| 46 |
10
|
fveq2d |
⊢ ( 𝜑 → ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 48 |
8
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) = ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) |
| 49 |
47 48
|
fveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) ) |
| 50 |
49
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) ) |
| 51 |
50 13
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 52 |
51
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑏 ∈ 𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ↔ ∀ 𝑏 ∈ 𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 53 |
15
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑏 ∈ 𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) |
| 54 |
17
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑏 ∈ 𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 55 |
52 53 54
|
3bitr3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 56 |
36 45 55
|
3anbi123d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ↔ ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) |
| 57 |
56
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐵 ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) |
| 58 |
1
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐵 ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐾 ) ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) ) |
| 59 |
2
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐵 ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐿 ) ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) |
| 60 |
57 58 59
|
3bitr3d |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( Base ‘ 𝐾 ) ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐿 ) ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) |
| 61 |
9 11 60
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ LVec ∧ ( Scalar ‘ 𝐾 ) ∈ *-Ring ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐾 ) ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) ↔ ( 𝐿 ∈ LVec ∧ ( Scalar ‘ 𝐿 ) ∈ *-Ring ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐿 ) ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) ) |
| 62 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 63 |
|
eqid |
⊢ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐾 ) |
| 64 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝐾 ) = ( ·𝑖 ‘ 𝐾 ) |
| 65 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 66 |
|
eqid |
⊢ ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) |
| 67 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐾 ) ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) |
| 68 |
62 63 64 65 66 67
|
isphl |
⊢ ( 𝐾 ∈ PreHil ↔ ( 𝐾 ∈ LVec ∧ ( Scalar ‘ 𝐾 ) ∈ *-Ring ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐾 ) ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) ) |
| 69 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 70 |
|
eqid |
⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 ) |
| 71 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝐿 ) = ( ·𝑖 ‘ 𝐿 ) |
| 72 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
| 73 |
|
eqid |
⊢ ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) |
| 74 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐿 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) |
| 75 |
69 70 71 72 73 74
|
isphl |
⊢ ( 𝐿 ∈ PreHil ↔ ( 𝐿 ∈ LVec ∧ ( Scalar ‘ 𝐿 ) ∈ *-Ring ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐿 ) ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) |
| 76 |
61 68 75
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ PreHil ↔ 𝐿 ∈ PreHil ) ) |