Metamath Proof Explorer


Theorem iporthcom

Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ip0l.z Z=0F
Assertion iporthcom WPreHilAVBVA,˙B=ZB,˙A=Z

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ip0l.z Z=0F
5 1 phlsrng WPreHilF*-Ring
6 5 3ad2ant1 WPreHilAVBVF*-Ring
7 eqid 𝑟𝑓F=𝑟𝑓F
8 eqid BaseF=BaseF
9 7 8 srngf1o F*-Ring𝑟𝑓F:BaseF1-1 ontoBaseF
10 f1of1 𝑟𝑓F:BaseF1-1 ontoBaseF𝑟𝑓F:BaseF1-1BaseF
11 6 9 10 3syl WPreHilAVBV𝑟𝑓F:BaseF1-1BaseF
12 1 2 3 8 ipcl WPreHilAVBVA,˙BBaseF
13 phllmod WPreHilWLMod
14 13 3ad2ant1 WPreHilAVBVWLMod
15 1 8 4 lmod0cl WLModZBaseF
16 14 15 syl WPreHilAVBVZBaseF
17 f1fveq 𝑟𝑓F:BaseF1-1BaseFA,˙BBaseFZBaseF𝑟𝑓FA,˙B=𝑟𝑓FZA,˙B=Z
18 11 12 16 17 syl12anc WPreHilAVBV𝑟𝑓FA,˙B=𝑟𝑓FZA,˙B=Z
19 eqid *F=*F
20 8 19 7 stafval A,˙BBaseF𝑟𝑓FA,˙B=A,˙B*F
21 12 20 syl WPreHilAVBV𝑟𝑓FA,˙B=A,˙B*F
22 1 2 3 19 ipcj WPreHilAVBVA,˙B*F=B,˙A
23 21 22 eqtrd WPreHilAVBV𝑟𝑓FA,˙B=B,˙A
24 8 19 7 stafval ZBaseF𝑟𝑓FZ=Z*F
25 16 24 syl WPreHilAVBV𝑟𝑓FZ=Z*F
26 19 4 srng0 F*-RingZ*F=Z
27 6 26 syl WPreHilAVBVZ*F=Z
28 25 27 eqtrd WPreHilAVBV𝑟𝑓FZ=Z
29 23 28 eqeq12d WPreHilAVBV𝑟𝑓FA,˙B=𝑟𝑓FZB,˙A=Z
30 18 29 bitr3d WPreHilAVBVA,˙B=ZB,˙A=Z