Metamath Proof Explorer


Theorem srng0

Description: The conjugate of the ring zero is zero. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses srng0.i ˙=*R
srng0.z 0˙=0R
Assertion srng0 R*-Ring˙0˙=0˙

Proof

Step Hyp Ref Expression
1 srng0.i ˙=*R
2 srng0.z 0˙=0R
3 srngring R*-RingRRing
4 ringgrp RRingRGrp
5 eqid BaseR=BaseR
6 5 2 grpidcl RGrp0˙BaseR
7 eqid 𝑟𝑓R=𝑟𝑓R
8 5 1 7 stafval 0˙BaseR𝑟𝑓R0˙=˙0˙
9 3 4 6 8 4syl R*-Ring𝑟𝑓R0˙=˙0˙
10 eqid opprR=opprR
11 10 7 srngrhm R*-Ring𝑟𝑓RRRingHomopprR
12 rhmghm 𝑟𝑓RRRingHomopprR𝑟𝑓RRGrpHomopprR
13 10 2 oppr0 0˙=0opprR
14 2 13 ghmid 𝑟𝑓RRGrpHomopprR𝑟𝑓R0˙=0˙
15 11 12 14 3syl R*-Ring𝑟𝑓R0˙=0˙
16 9 15 eqtr3d R*-Ring˙0˙=0˙