Metamath Proof Explorer


Theorem issrngd

Description: Properties that determine a star ring. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses issrngd.k φK=BaseR
issrngd.p φ+˙=+R
issrngd.t φ·˙=R
issrngd.c φ˙=*R
issrngd.r φRRing
issrngd.cl φxK˙xK
issrngd.dp φxKyK˙x+˙y=˙x+˙˙y
issrngd.dt φxKyK˙x·˙y=˙y·˙˙x
issrngd.id φxK˙˙x=x
Assertion issrngd φR*-Ring

Proof

Step Hyp Ref Expression
1 issrngd.k φK=BaseR
2 issrngd.p φ+˙=+R
3 issrngd.t φ·˙=R
4 issrngd.c φ˙=*R
5 issrngd.r φRRing
6 issrngd.cl φxK˙xK
7 issrngd.dp φxKyK˙x+˙y=˙x+˙˙y
8 issrngd.dt φxKyK˙x·˙y=˙y·˙˙x
9 issrngd.id φxK˙˙x=x
10 eqid BaseR=BaseR
11 eqid 1R=1R
12 eqid opprR=opprR
13 12 11 oppr1 1R=1opprR
14 eqid R=R
15 eqid opprR=opprR
16 12 opprring RRingopprRRing
17 5 16 syl φopprRRing
18 id x=1Rx=1R
19 fveq2 x=1Rx*R=1R*R
20 19 fveq2d x=1Rx*R*R=1R*R*R
21 18 20 eqeq12d x=1Rx=x*R*R1R=1R*R*R
22 9 ex φxK˙˙x=x
23 1 eleq2d φxKxBaseR
24 4 fveq1d φ˙x=x*R
25 4 24 fveq12d φ˙˙x=x*R*R
26 25 eqeq1d φ˙˙x=xx*R*R=x
27 22 23 26 3imtr3d φxBaseRx*R*R=x
28 27 imp φxBaseRx*R*R=x
29 28 eqcomd φxBaseRx=x*R*R
30 29 ralrimiva φxBaseRx=x*R*R
31 10 11 ringidcl RRing1RBaseR
32 5 31 syl φ1RBaseR
33 21 30 32 rspcdva φ1R=1R*R*R
34 33 oveq1d φ1RR1R*R=1R*R*RR1R*R
35 19 eleq1d x=1Rx*RBaseR1R*RBaseR
36 6 ex φxK˙xK
37 24 1 eleq12d φ˙xKx*RBaseR
38 36 23 37 3imtr3d φxBaseRx*RBaseR
39 38 ralrimiv φxBaseRx*RBaseR
40 35 39 32 rspcdva φ1R*RBaseR
41 8 3expib φxKyK˙x·˙y=˙y·˙˙x
42 1 eleq2d φyKyBaseR
43 23 42 anbi12d φxKyKxBaseRyBaseR
44 3 oveqd φx·˙y=xRy
45 4 44 fveq12d φ˙x·˙y=xRy*R
46 4 fveq1d φ˙y=y*R
47 3 46 24 oveq123d φ˙y·˙˙x=y*RRx*R
48 45 47 eqeq12d φ˙x·˙y=˙y·˙˙xxRy*R=y*RRx*R
49 41 43 48 3imtr3d φxBaseRyBaseRxRy*R=y*RRx*R
50 49 ralrimivv φxBaseRyBaseRxRy*R=y*RRx*R
51 fvoveq1 x=1RxRy*R=1RRy*R
52 19 oveq2d x=1Ry*RRx*R=y*RR1R*R
53 51 52 eqeq12d x=1RxRy*R=y*RRx*R1RRy*R=y*RR1R*R
54 oveq2 y=1R*R1RRy=1RR1R*R
55 54 fveq2d y=1R*R1RRy*R=1RR1R*R*R
56 fveq2 y=1R*Ry*R=1R*R*R
57 56 oveq1d y=1R*Ry*RR1R*R=1R*R*RR1R*R
58 55 57 eqeq12d y=1R*R1RRy*R=y*RR1R*R1RR1R*R*R=1R*R*RR1R*R
59 53 58 rspc2va 1RBaseR1R*RBaseRxBaseRyBaseRxRy*R=y*RRx*R1RR1R*R*R=1R*R*RR1R*R
60 32 40 50 59 syl21anc φ1RR1R*R*R=1R*R*RR1R*R
61 34 60 eqtr4d φ1RR1R*R=1RR1R*R*R
62 10 14 11 ringlidm RRing1R*RBaseR1RR1R*R=1R*R
63 5 40 62 syl2anc φ1RR1R*R=1R*R
64 63 fveq2d φ1RR1R*R*R=1R*R*R
65 61 63 64 3eqtr3d φ1R*R=1R*R*R
66 eqid *R=*R
67 eqid 𝑟𝑓R=𝑟𝑓R
68 10 66 67 stafval 1RBaseR𝑟𝑓R1R=1R*R
69 32 68 syl φ𝑟𝑓R1R=1R*R
70 65 69 33 3eqtr4d φ𝑟𝑓R1R=1R
71 49 imp φxBaseRyBaseRxRy*R=y*RRx*R
72 10 14 12 15 opprmul x*RopprRy*R=y*RRx*R
73 71 72 eqtr4di φxBaseRyBaseRxRy*R=x*RopprRy*R
74 10 14 ringcl RRingxBaseRyBaseRxRyBaseR
75 74 3expb RRingxBaseRyBaseRxRyBaseR
76 5 75 sylan φxBaseRyBaseRxRyBaseR
77 10 66 67 stafval xRyBaseR𝑟𝑓RxRy=xRy*R
78 76 77 syl φxBaseRyBaseR𝑟𝑓RxRy=xRy*R
79 10 66 67 stafval xBaseR𝑟𝑓Rx=x*R
80 10 66 67 stafval yBaseR𝑟𝑓Ry=y*R
81 79 80 oveqan12d xBaseRyBaseR𝑟𝑓RxopprR𝑟𝑓Ry=x*RopprRy*R
82 81 adantl φxBaseRyBaseR𝑟𝑓RxopprR𝑟𝑓Ry=x*RopprRy*R
83 73 78 82 3eqtr4d φxBaseRyBaseR𝑟𝑓RxRy=𝑟𝑓RxopprR𝑟𝑓Ry
84 12 10 opprbas BaseR=BaseopprR
85 eqid +R=+R
86 12 85 oppradd +R=+opprR
87 38 imp φxBaseRx*RBaseR
88 10 66 67 staffval 𝑟𝑓R=xBaseRx*R
89 87 88 fmptd φ𝑟𝑓R:BaseRBaseR
90 7 3expib φxKyK˙x+˙y=˙x+˙˙y
91 2 oveqd φx+˙y=x+Ry
92 4 91 fveq12d φ˙x+˙y=x+Ry*R
93 2 24 46 oveq123d φ˙x+˙˙y=x*R+Ry*R
94 92 93 eqeq12d φ˙x+˙y=˙x+˙˙yx+Ry*R=x*R+Ry*R
95 90 43 94 3imtr3d φxBaseRyBaseRx+Ry*R=x*R+Ry*R
96 95 imp φxBaseRyBaseRx+Ry*R=x*R+Ry*R
97 10 85 ringacl RRingxBaseRyBaseRx+RyBaseR
98 97 3expb RRingxBaseRyBaseRx+RyBaseR
99 5 98 sylan φxBaseRyBaseRx+RyBaseR
100 10 66 67 stafval x+RyBaseR𝑟𝑓Rx+Ry=x+Ry*R
101 99 100 syl φxBaseRyBaseR𝑟𝑓Rx+Ry=x+Ry*R
102 79 80 oveqan12d xBaseRyBaseR𝑟𝑓Rx+R𝑟𝑓Ry=x*R+Ry*R
103 102 adantl φxBaseRyBaseR𝑟𝑓Rx+R𝑟𝑓Ry=x*R+Ry*R
104 96 101 103 3eqtr4d φxBaseRyBaseR𝑟𝑓Rx+Ry=𝑟𝑓Rx+R𝑟𝑓Ry
105 10 11 13 14 15 5 17 70 83 84 85 86 89 104 isrhmd φ𝑟𝑓RRRingHomopprR
106 10 66 67 staffval 𝑟𝑓R=yBaseRy*R
107 106 fmpt yBaseRy*RBaseR𝑟𝑓R:BaseRBaseR
108 89 107 sylibr φyBaseRy*RBaseR
109 108 r19.21bi φyBaseRy*RBaseR
110 id x=yx=y
111 fveq2 x=yx*R=y*R
112 111 fveq2d x=yx*R*R=y*R*R
113 110 112 eqeq12d x=yx=x*R*Ry=y*R*R
114 113 rspccva xBaseRx=x*R*RyBaseRy=y*R*R
115 30 114 sylan φyBaseRy=y*R*R
116 115 adantrl φxBaseRyBaseRy=y*R*R
117 fveq2 x=y*Rx*R=y*R*R
118 117 eqeq2d x=y*Ry=x*Ry=y*R*R
119 116 118 syl5ibrcom φxBaseRyBaseRx=y*Ry=x*R
120 29 adantrr φxBaseRyBaseRx=x*R*R
121 fveq2 y=x*Ry*R=x*R*R
122 121 eqeq2d y=x*Rx=y*Rx=x*R*R
123 120 122 syl5ibrcom φxBaseRyBaseRy=x*Rx=y*R
124 119 123 impbid φxBaseRyBaseRx=y*Ry=x*R
125 88 87 109 124 f1ocnv2d φ𝑟𝑓R:BaseR1-1 ontoBaseR𝑟𝑓R-1=yBaseRy*R
126 125 simprd φ𝑟𝑓R-1=yBaseRy*R
127 106 126 eqtr4id φ𝑟𝑓R=𝑟𝑓R-1
128 12 67 issrng R*-Ring𝑟𝑓RRRingHomopprR𝑟𝑓R=𝑟𝑓R-1
129 105 127 128 sylanbrc φR*-Ring