Metamath Proof Explorer


Theorem idsrngd

Description: A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019)

Ref Expression
Hypotheses idsrngd.k B = Base R
idsrngd.c ˙ = * R
idsrngd.r φ R CRing
idsrngd.i φ x B ˙ x = x
Assertion idsrngd φ R *-Ring

Proof

Step Hyp Ref Expression
1 idsrngd.k B = Base R
2 idsrngd.c ˙ = * R
3 idsrngd.r φ R CRing
4 idsrngd.i φ x B ˙ x = x
5 1 a1i φ B = Base R
6 eqidd φ + R = + R
7 eqidd φ R = R
8 2 a1i φ ˙ = * R
9 crngring R CRing R Ring
10 3 9 syl φ R Ring
11 4 ralrimiva φ x B ˙ x = x
12 11 adantr φ a B x B ˙ x = x
13 simpr φ a B a B
14 simpr φ a B x = a x = a
15 14 fveq2d φ a B x = a ˙ x = ˙ a
16 15 14 eqeq12d φ a B x = a ˙ x = x ˙ a = a
17 13 16 rspcdv φ a B x B ˙ x = x ˙ a = a
18 12 17 mpd φ a B ˙ a = a
19 18 13 eqeltrd φ a B ˙ a B
20 11 adantr φ b B x B ˙ x = x
21 20 3adant2 φ a B b B x B ˙ x = x
22 ringgrp R Ring R Grp
23 10 22 syl φ R Grp
24 eqid + R = + R
25 1 24 grpcl R Grp a B b B a + R b B
26 23 25 syl3an1 φ a B b B a + R b B
27 simpr φ a B b B x = a + R b x = a + R b
28 27 fveq2d φ a B b B x = a + R b ˙ x = ˙ a + R b
29 28 27 eqeq12d φ a B b B x = a + R b ˙ x = x ˙ a + R b = a + R b
30 26 29 rspcdv φ a B b B x B ˙ x = x ˙ a + R b = a + R b
31 21 30 mpd φ a B b B ˙ a + R b = a + R b
32 18 3adant3 φ a B b B ˙ a = a
33 simpr φ b B b B
34 simpr φ b B x = b x = b
35 34 fveq2d φ b B x = b ˙ x = ˙ b
36 35 34 eqeq12d φ b B x = b ˙ x = x ˙ b = b
37 33 36 rspcdv φ b B x B ˙ x = x ˙ b = b
38 20 37 mpd φ b B ˙ b = b
39 38 3adant2 φ a B b B ˙ b = b
40 32 39 oveq12d φ a B b B ˙ a + R ˙ b = a + R b
41 31 40 eqtr4d φ a B b B ˙ a + R b = ˙ a + R ˙ b
42 eqid R = R
43 1 42 crngcom R CRing a B b B a R b = b R a
44 3 43 syl3an1 φ a B b B a R b = b R a
45 1 42 ringcl R Ring a B b B a R b B
46 10 45 syl3an1 φ a B b B a R b B
47 simpr φ a B b B x = a R b x = a R b
48 47 fveq2d φ a B b B x = a R b ˙ x = ˙ a R b
49 48 47 eqeq12d φ a B b B x = a R b ˙ x = x ˙ a R b = a R b
50 46 49 rspcdv φ a B b B x B ˙ x = x ˙ a R b = a R b
51 21 50 mpd φ a B b B ˙ a R b = a R b
52 39 32 oveq12d φ a B b B ˙ b R ˙ a = b R a
53 44 51 52 3eqtr4d φ a B b B ˙ a R b = ˙ b R ˙ a
54 18 fveq2d φ a B ˙ ˙ a = ˙ a
55 54 18 eqtrd φ a B ˙ ˙ a = a
56 5 6 7 8 10 19 41 53 55 issrngd φ R *-Ring