| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idsrngd.k |
|- B = ( Base ` R ) |
| 2 |
|
idsrngd.c |
|- .* = ( *r ` R ) |
| 3 |
|
idsrngd.r |
|- ( ph -> R e. CRing ) |
| 4 |
|
idsrngd.i |
|- ( ( ph /\ x e. B ) -> ( .* ` x ) = x ) |
| 5 |
1
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
| 6 |
|
eqidd |
|- ( ph -> ( +g ` R ) = ( +g ` R ) ) |
| 7 |
|
eqidd |
|- ( ph -> ( .r ` R ) = ( .r ` R ) ) |
| 8 |
2
|
a1i |
|- ( ph -> .* = ( *r ` R ) ) |
| 9 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 10 |
3 9
|
syl |
|- ( ph -> R e. Ring ) |
| 11 |
4
|
ralrimiva |
|- ( ph -> A. x e. B ( .* ` x ) = x ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ a e. B ) -> A. x e. B ( .* ` x ) = x ) |
| 13 |
|
simpr |
|- ( ( ph /\ a e. B ) -> a e. B ) |
| 14 |
|
simpr |
|- ( ( ( ph /\ a e. B ) /\ x = a ) -> x = a ) |
| 15 |
14
|
fveq2d |
|- ( ( ( ph /\ a e. B ) /\ x = a ) -> ( .* ` x ) = ( .* ` a ) ) |
| 16 |
15 14
|
eqeq12d |
|- ( ( ( ph /\ a e. B ) /\ x = a ) -> ( ( .* ` x ) = x <-> ( .* ` a ) = a ) ) |
| 17 |
13 16
|
rspcdv |
|- ( ( ph /\ a e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` a ) = a ) ) |
| 18 |
12 17
|
mpd |
|- ( ( ph /\ a e. B ) -> ( .* ` a ) = a ) |
| 19 |
18 13
|
eqeltrd |
|- ( ( ph /\ a e. B ) -> ( .* ` a ) e. B ) |
| 20 |
11
|
adantr |
|- ( ( ph /\ b e. B ) -> A. x e. B ( .* ` x ) = x ) |
| 21 |
20
|
3adant2 |
|- ( ( ph /\ a e. B /\ b e. B ) -> A. x e. B ( .* ` x ) = x ) |
| 22 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 23 |
10 22
|
syl |
|- ( ph -> R e. Grp ) |
| 24 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 25 |
1 24
|
grpcl |
|- ( ( R e. Grp /\ a e. B /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) |
| 26 |
23 25
|
syl3an1 |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) |
| 27 |
|
simpr |
|- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( +g ` R ) b ) ) -> x = ( a ( +g ` R ) b ) ) |
| 28 |
27
|
fveq2d |
|- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( +g ` R ) b ) ) -> ( .* ` x ) = ( .* ` ( a ( +g ` R ) b ) ) ) |
| 29 |
28 27
|
eqeq12d |
|- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( +g ` R ) b ) ) -> ( ( .* ` x ) = x <-> ( .* ` ( a ( +g ` R ) b ) ) = ( a ( +g ` R ) b ) ) ) |
| 30 |
26 29
|
rspcdv |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` ( a ( +g ` R ) b ) ) = ( a ( +g ` R ) b ) ) ) |
| 31 |
21 30
|
mpd |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( +g ` R ) b ) ) = ( a ( +g ` R ) b ) ) |
| 32 |
18
|
3adant3 |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` a ) = a ) |
| 33 |
|
simpr |
|- ( ( ph /\ b e. B ) -> b e. B ) |
| 34 |
|
simpr |
|- ( ( ( ph /\ b e. B ) /\ x = b ) -> x = b ) |
| 35 |
34
|
fveq2d |
|- ( ( ( ph /\ b e. B ) /\ x = b ) -> ( .* ` x ) = ( .* ` b ) ) |
| 36 |
35 34
|
eqeq12d |
|- ( ( ( ph /\ b e. B ) /\ x = b ) -> ( ( .* ` x ) = x <-> ( .* ` b ) = b ) ) |
| 37 |
33 36
|
rspcdv |
|- ( ( ph /\ b e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` b ) = b ) ) |
| 38 |
20 37
|
mpd |
|- ( ( ph /\ b e. B ) -> ( .* ` b ) = b ) |
| 39 |
38
|
3adant2 |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` b ) = b ) |
| 40 |
32 39
|
oveq12d |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( ( .* ` a ) ( +g ` R ) ( .* ` b ) ) = ( a ( +g ` R ) b ) ) |
| 41 |
31 40
|
eqtr4d |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( +g ` R ) b ) ) = ( ( .* ` a ) ( +g ` R ) ( .* ` b ) ) ) |
| 42 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 43 |
1 42
|
crngcom |
|- ( ( R e. CRing /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) |
| 44 |
3 43
|
syl3an1 |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) |
| 45 |
1 42
|
ringcl |
|- ( ( R e. Ring /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) e. B ) |
| 46 |
10 45
|
syl3an1 |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) e. B ) |
| 47 |
|
simpr |
|- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( .r ` R ) b ) ) -> x = ( a ( .r ` R ) b ) ) |
| 48 |
47
|
fveq2d |
|- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( .r ` R ) b ) ) -> ( .* ` x ) = ( .* ` ( a ( .r ` R ) b ) ) ) |
| 49 |
48 47
|
eqeq12d |
|- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( .r ` R ) b ) ) -> ( ( .* ` x ) = x <-> ( .* ` ( a ( .r ` R ) b ) ) = ( a ( .r ` R ) b ) ) ) |
| 50 |
46 49
|
rspcdv |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` ( a ( .r ` R ) b ) ) = ( a ( .r ` R ) b ) ) ) |
| 51 |
21 50
|
mpd |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( .r ` R ) b ) ) = ( a ( .r ` R ) b ) ) |
| 52 |
39 32
|
oveq12d |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( ( .* ` b ) ( .r ` R ) ( .* ` a ) ) = ( b ( .r ` R ) a ) ) |
| 53 |
44 51 52
|
3eqtr4d |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( .r ` R ) b ) ) = ( ( .* ` b ) ( .r ` R ) ( .* ` a ) ) ) |
| 54 |
18
|
fveq2d |
|- ( ( ph /\ a e. B ) -> ( .* ` ( .* ` a ) ) = ( .* ` a ) ) |
| 55 |
54 18
|
eqtrd |
|- ( ( ph /\ a e. B ) -> ( .* ` ( .* ` a ) ) = a ) |
| 56 |
5 6 7 8 10 19 41 53 55
|
issrngd |
|- ( ph -> R e. *Ring ) |