| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issrngd.k |
|- ( ph -> K = ( Base ` R ) ) |
| 2 |
|
issrngd.p |
|- ( ph -> .+ = ( +g ` R ) ) |
| 3 |
|
issrngd.t |
|- ( ph -> .x. = ( .r ` R ) ) |
| 4 |
|
issrngd.c |
|- ( ph -> .* = ( *r ` R ) ) |
| 5 |
|
issrngd.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
issrngd.cl |
|- ( ( ph /\ x e. K ) -> ( .* ` x ) e. K ) |
| 7 |
|
issrngd.dp |
|- ( ( ph /\ x e. K /\ y e. K ) -> ( .* ` ( x .+ y ) ) = ( ( .* ` x ) .+ ( .* ` y ) ) ) |
| 8 |
|
issrngd.dt |
|- ( ( ph /\ x e. K /\ y e. K ) -> ( .* ` ( x .x. y ) ) = ( ( .* ` y ) .x. ( .* ` x ) ) ) |
| 9 |
|
issrngd.id |
|- ( ( ph /\ x e. K ) -> ( .* ` ( .* ` x ) ) = x ) |
| 10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 11 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 12 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 13 |
12 11
|
oppr1 |
|- ( 1r ` R ) = ( 1r ` ( oppR ` R ) ) |
| 14 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 15 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
| 16 |
12
|
opprring |
|- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 17 |
5 16
|
syl |
|- ( ph -> ( oppR ` R ) e. Ring ) |
| 18 |
|
id |
|- ( x = ( 1r ` R ) -> x = ( 1r ` R ) ) |
| 19 |
|
fveq2 |
|- ( x = ( 1r ` R ) -> ( ( *r ` R ) ` x ) = ( ( *r ` R ) ` ( 1r ` R ) ) ) |
| 20 |
19
|
fveq2d |
|- ( x = ( 1r ` R ) -> ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 21 |
18 20
|
eqeq12d |
|- ( x = ( 1r ` R ) -> ( x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) <-> ( 1r ` R ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) ) |
| 22 |
9
|
ex |
|- ( ph -> ( x e. K -> ( .* ` ( .* ` x ) ) = x ) ) |
| 23 |
1
|
eleq2d |
|- ( ph -> ( x e. K <-> x e. ( Base ` R ) ) ) |
| 24 |
4
|
fveq1d |
|- ( ph -> ( .* ` x ) = ( ( *r ` R ) ` x ) ) |
| 25 |
4 24
|
fveq12d |
|- ( ph -> ( .* ` ( .* ` x ) ) = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) |
| 26 |
25
|
eqeq1d |
|- ( ph -> ( ( .* ` ( .* ` x ) ) = x <-> ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) = x ) ) |
| 27 |
22 23 26
|
3imtr3d |
|- ( ph -> ( x e. ( Base ` R ) -> ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) = x ) ) |
| 28 |
27
|
imp |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) = x ) |
| 29 |
28
|
eqcomd |
|- ( ( ph /\ x e. ( Base ` R ) ) -> x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) |
| 30 |
29
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` R ) x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) |
| 31 |
10 11
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 32 |
5 31
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 33 |
21 30 32
|
rspcdva |
|- ( ph -> ( 1r ` R ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 34 |
33
|
oveq1d |
|- ( ph -> ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) = ( ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 35 |
19
|
eleq1d |
|- ( x = ( 1r ` R ) -> ( ( ( *r ` R ) ` x ) e. ( Base ` R ) <-> ( ( *r ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) ) |
| 36 |
6
|
ex |
|- ( ph -> ( x e. K -> ( .* ` x ) e. K ) ) |
| 37 |
24 1
|
eleq12d |
|- ( ph -> ( ( .* ` x ) e. K <-> ( ( *r ` R ) ` x ) e. ( Base ` R ) ) ) |
| 38 |
36 23 37
|
3imtr3d |
|- ( ph -> ( x e. ( Base ` R ) -> ( ( *r ` R ) ` x ) e. ( Base ` R ) ) ) |
| 39 |
38
|
ralrimiv |
|- ( ph -> A. x e. ( Base ` R ) ( ( *r ` R ) ` x ) e. ( Base ` R ) ) |
| 40 |
35 39 32
|
rspcdva |
|- ( ph -> ( ( *r ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) |
| 41 |
8
|
3expib |
|- ( ph -> ( ( x e. K /\ y e. K ) -> ( .* ` ( x .x. y ) ) = ( ( .* ` y ) .x. ( .* ` x ) ) ) ) |
| 42 |
1
|
eleq2d |
|- ( ph -> ( y e. K <-> y e. ( Base ` R ) ) ) |
| 43 |
23 42
|
anbi12d |
|- ( ph -> ( ( x e. K /\ y e. K ) <-> ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) ) |
| 44 |
3
|
oveqd |
|- ( ph -> ( x .x. y ) = ( x ( .r ` R ) y ) ) |
| 45 |
4 44
|
fveq12d |
|- ( ph -> ( .* ` ( x .x. y ) ) = ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) ) |
| 46 |
4
|
fveq1d |
|- ( ph -> ( .* ` y ) = ( ( *r ` R ) ` y ) ) |
| 47 |
3 46 24
|
oveq123d |
|- ( ph -> ( ( .* ` y ) .x. ( .* ` x ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) |
| 48 |
45 47
|
eqeq12d |
|- ( ph -> ( ( .* ` ( x .x. y ) ) = ( ( .* ` y ) .x. ( .* ` x ) ) <-> ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) ) |
| 49 |
41 43 48
|
3imtr3d |
|- ( ph -> ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) ) |
| 50 |
49
|
ralrimivv |
|- ( ph -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) |
| 51 |
|
fvoveq1 |
|- ( x = ( 1r ` R ) -> ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) y ) ) ) |
| 52 |
19
|
oveq2d |
|- ( x = ( 1r ` R ) -> ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 53 |
51 52
|
eqeq12d |
|- ( x = ( 1r ` R ) -> ( ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) <-> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) ) |
| 54 |
|
oveq2 |
|- ( y = ( ( *r ` R ) ` ( 1r ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) y ) = ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 55 |
54
|
fveq2d |
|- ( y = ( ( *r ` R ) ` ( 1r ` R ) ) -> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) y ) ) = ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) ) |
| 56 |
|
fveq2 |
|- ( y = ( ( *r ` R ) ` ( 1r ` R ) ) -> ( ( *r ` R ) ` y ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 57 |
56
|
oveq1d |
|- ( y = ( ( *r ` R ) ` ( 1r ` R ) ) -> ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) = ( ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 58 |
55 57
|
eqeq12d |
|- ( y = ( ( *r ` R ) ` ( 1r ` R ) ) -> ( ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) <-> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) = ( ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) ) |
| 59 |
53 58
|
rspc2va |
|- ( ( ( ( 1r ` R ) e. ( Base ` R ) /\ ( ( *r ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) -> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) = ( ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 60 |
32 40 50 59
|
syl21anc |
|- ( ph -> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) = ( ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 61 |
34 60
|
eqtr4d |
|- ( ph -> ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) = ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) ) |
| 62 |
10 14 11
|
ringlidm |
|- ( ( R e. Ring /\ ( ( *r ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) = ( ( *r ` R ) ` ( 1r ` R ) ) ) |
| 63 |
5 40 62
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) = ( ( *r ` R ) ` ( 1r ` R ) ) ) |
| 64 |
63
|
fveq2d |
|- ( ph -> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 65 |
61 63 64
|
3eqtr3d |
|- ( ph -> ( ( *r ` R ) ` ( 1r ` R ) ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 66 |
|
eqid |
|- ( *r ` R ) = ( *r ` R ) |
| 67 |
|
eqid |
|- ( *rf ` R ) = ( *rf ` R ) |
| 68 |
10 66 67
|
stafval |
|- ( ( 1r ` R ) e. ( Base ` R ) -> ( ( *rf ` R ) ` ( 1r ` R ) ) = ( ( *r ` R ) ` ( 1r ` R ) ) ) |
| 69 |
32 68
|
syl |
|- ( ph -> ( ( *rf ` R ) ` ( 1r ` R ) ) = ( ( *r ` R ) ` ( 1r ` R ) ) ) |
| 70 |
65 69 33
|
3eqtr4d |
|- ( ph -> ( ( *rf ` R ) ` ( 1r ` R ) ) = ( 1r ` R ) ) |
| 71 |
49
|
imp |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) |
| 72 |
10 14 12 15
|
opprmul |
|- ( ( ( *r ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *r ` R ) ` y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) |
| 73 |
71 72
|
eqtr4di |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *r ` R ) ` y ) ) ) |
| 74 |
10 14
|
ringcl |
|- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 75 |
74
|
3expb |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 76 |
5 75
|
sylan |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 77 |
10 66 67
|
stafval |
|- ( ( x ( .r ` R ) y ) e. ( Base ` R ) -> ( ( *rf ` R ) ` ( x ( .r ` R ) y ) ) = ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) ) |
| 78 |
76 77
|
syl |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *rf ` R ) ` ( x ( .r ` R ) y ) ) = ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) ) |
| 79 |
10 66 67
|
stafval |
|- ( x e. ( Base ` R ) -> ( ( *rf ` R ) ` x ) = ( ( *r ` R ) ` x ) ) |
| 80 |
10 66 67
|
stafval |
|- ( y e. ( Base ` R ) -> ( ( *rf ` R ) ` y ) = ( ( *r ` R ) ` y ) ) |
| 81 |
79 80
|
oveqan12d |
|- ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( ( *rf ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *rf ` R ) ` y ) ) = ( ( ( *r ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *r ` R ) ` y ) ) ) |
| 82 |
81
|
adantl |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( ( *rf ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *rf ` R ) ` y ) ) = ( ( ( *r ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *r ` R ) ` y ) ) ) |
| 83 |
73 78 82
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *rf ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *rf ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *rf ` R ) ` y ) ) ) |
| 84 |
12 10
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 85 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 86 |
12 85
|
oppradd |
|- ( +g ` R ) = ( +g ` ( oppR ` R ) ) |
| 87 |
38
|
imp |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( *r ` R ) ` x ) e. ( Base ` R ) ) |
| 88 |
10 66 67
|
staffval |
|- ( *rf ` R ) = ( x e. ( Base ` R ) |-> ( ( *r ` R ) ` x ) ) |
| 89 |
87 88
|
fmptd |
|- ( ph -> ( *rf ` R ) : ( Base ` R ) --> ( Base ` R ) ) |
| 90 |
7
|
3expib |
|- ( ph -> ( ( x e. K /\ y e. K ) -> ( .* ` ( x .+ y ) ) = ( ( .* ` x ) .+ ( .* ` y ) ) ) ) |
| 91 |
2
|
oveqd |
|- ( ph -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
| 92 |
4 91
|
fveq12d |
|- ( ph -> ( .* ` ( x .+ y ) ) = ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) ) |
| 93 |
2 24 46
|
oveq123d |
|- ( ph -> ( ( .* ` x ) .+ ( .* ` y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) |
| 94 |
92 93
|
eqeq12d |
|- ( ph -> ( ( .* ` ( x .+ y ) ) = ( ( .* ` x ) .+ ( .* ` y ) ) <-> ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) ) |
| 95 |
90 43 94
|
3imtr3d |
|- ( ph -> ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) ) |
| 96 |
95
|
imp |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) |
| 97 |
10 85
|
ringacl |
|- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 98 |
97
|
3expb |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 99 |
5 98
|
sylan |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 100 |
10 66 67
|
stafval |
|- ( ( x ( +g ` R ) y ) e. ( Base ` R ) -> ( ( *rf ` R ) ` ( x ( +g ` R ) y ) ) = ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) ) |
| 101 |
99 100
|
syl |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *rf ` R ) ` ( x ( +g ` R ) y ) ) = ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) ) |
| 102 |
79 80
|
oveqan12d |
|- ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( ( *rf ` R ) ` x ) ( +g ` R ) ( ( *rf ` R ) ` y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) |
| 103 |
102
|
adantl |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( ( *rf ` R ) ` x ) ( +g ` R ) ( ( *rf ` R ) ` y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) |
| 104 |
96 101 103
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *rf ` R ) ` ( x ( +g ` R ) y ) ) = ( ( ( *rf ` R ) ` x ) ( +g ` R ) ( ( *rf ` R ) ` y ) ) ) |
| 105 |
10 11 13 14 15 5 17 70 83 84 85 86 89 104
|
isrhmd |
|- ( ph -> ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) ) |
| 106 |
10 66 67
|
staffval |
|- ( *rf ` R ) = ( y e. ( Base ` R ) |-> ( ( *r ` R ) ` y ) ) |
| 107 |
106
|
fmpt |
|- ( A. y e. ( Base ` R ) ( ( *r ` R ) ` y ) e. ( Base ` R ) <-> ( *rf ` R ) : ( Base ` R ) --> ( Base ` R ) ) |
| 108 |
89 107
|
sylibr |
|- ( ph -> A. y e. ( Base ` R ) ( ( *r ` R ) ` y ) e. ( Base ` R ) ) |
| 109 |
108
|
r19.21bi |
|- ( ( ph /\ y e. ( Base ` R ) ) -> ( ( *r ` R ) ` y ) e. ( Base ` R ) ) |
| 110 |
|
id |
|- ( x = y -> x = y ) |
| 111 |
|
fveq2 |
|- ( x = y -> ( ( *r ` R ) ` x ) = ( ( *r ` R ) ` y ) ) |
| 112 |
111
|
fveq2d |
|- ( x = y -> ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) |
| 113 |
110 112
|
eqeq12d |
|- ( x = y -> ( x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) <-> y = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) ) |
| 114 |
113
|
rspccva |
|- ( ( A. x e. ( Base ` R ) x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) /\ y e. ( Base ` R ) ) -> y = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) |
| 115 |
30 114
|
sylan |
|- ( ( ph /\ y e. ( Base ` R ) ) -> y = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) |
| 116 |
115
|
adantrl |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> y = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) |
| 117 |
|
fveq2 |
|- ( x = ( ( *r ` R ) ` y ) -> ( ( *r ` R ) ` x ) = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) |
| 118 |
117
|
eqeq2d |
|- ( x = ( ( *r ` R ) ` y ) -> ( y = ( ( *r ` R ) ` x ) <-> y = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) ) |
| 119 |
116 118
|
syl5ibrcom |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x = ( ( *r ` R ) ` y ) -> y = ( ( *r ` R ) ` x ) ) ) |
| 120 |
29
|
adantrr |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) |
| 121 |
|
fveq2 |
|- ( y = ( ( *r ` R ) ` x ) -> ( ( *r ` R ) ` y ) = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) |
| 122 |
121
|
eqeq2d |
|- ( y = ( ( *r ` R ) ` x ) -> ( x = ( ( *r ` R ) ` y ) <-> x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) ) |
| 123 |
120 122
|
syl5ibrcom |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( y = ( ( *r ` R ) ` x ) -> x = ( ( *r ` R ) ` y ) ) ) |
| 124 |
119 123
|
impbid |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x = ( ( *r ` R ) ` y ) <-> y = ( ( *r ` R ) ` x ) ) ) |
| 125 |
88 87 109 124
|
f1ocnv2d |
|- ( ph -> ( ( *rf ` R ) : ( Base ` R ) -1-1-onto-> ( Base ` R ) /\ `' ( *rf ` R ) = ( y e. ( Base ` R ) |-> ( ( *r ` R ) ` y ) ) ) ) |
| 126 |
125
|
simprd |
|- ( ph -> `' ( *rf ` R ) = ( y e. ( Base ` R ) |-> ( ( *r ` R ) ` y ) ) ) |
| 127 |
106 126
|
eqtr4id |
|- ( ph -> ( *rf ` R ) = `' ( *rf ` R ) ) |
| 128 |
12 67
|
issrng |
|- ( R e. *Ring <-> ( ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) /\ ( *rf ` R ) = `' ( *rf ` R ) ) ) |
| 129 |
105 127 128
|
sylanbrc |
|- ( ph -> R e. *Ring ) |