Metamath Proof Explorer


Theorem ringacl

Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014)

Ref Expression
Hypotheses ringacl.b
|- B = ( Base ` R )
ringacl.p
|- .+ = ( +g ` R )
Assertion ringacl
|- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B )

Proof

Step Hyp Ref Expression
1 ringacl.b
 |-  B = ( Base ` R )
2 ringacl.p
 |-  .+ = ( +g ` R )
3 ringgrp
 |-  ( R e. Ring -> R e. Grp )
4 1 2 grpcl
 |-  ( ( R e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B )
5 3 4 syl3an1
 |-  ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B )