Metamath Proof Explorer


Theorem ip0l

Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. (Contributed by NM, 5-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ip0l.z Z = 0 F
ip0l.o 0 ˙ = 0 W
Assertion ip0l W PreHil A V 0 ˙ , ˙ A = Z

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ip0l.z Z = 0 F
5 ip0l.o 0 ˙ = 0 W
6 phllmod W PreHil W LMod
7 lmodgrp W LMod W Grp
8 3 5 grpidcl W Grp 0 ˙ V
9 6 7 8 3syl W PreHil 0 ˙ V
10 9 adantr W PreHil A V 0 ˙ V
11 oveq1 x = 0 ˙ x , ˙ A = 0 ˙ , ˙ A
12 eqid x V x , ˙ A = x V x , ˙ A
13 ovex 0 ˙ , ˙ A V
14 11 12 13 fvmpt 0 ˙ V x V x , ˙ A 0 ˙ = 0 ˙ , ˙ A
15 10 14 syl W PreHil A V x V x , ˙ A 0 ˙ = 0 ˙ , ˙ A
16 1 2 3 12 phllmhm W PreHil A V x V x , ˙ A W LMHom ringLMod F
17 lmghm x V x , ˙ A W LMHom ringLMod F x V x , ˙ A W GrpHom ringLMod F
18 rlm0 0 F = 0 ringLMod F
19 4 18 eqtri Z = 0 ringLMod F
20 5 19 ghmid x V x , ˙ A W GrpHom ringLMod F x V x , ˙ A 0 ˙ = Z
21 16 17 20 3syl W PreHil A V x V x , ˙ A 0 ˙ = Z
22 15 21 eqtr3d W PreHil A V 0 ˙ , ˙ A = Z