| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlsrng.f |
|- F = ( Scalar ` W ) |
| 2 |
|
phllmhm.h |
|- ., = ( .i ` W ) |
| 3 |
|
phllmhm.v |
|- V = ( Base ` W ) |
| 4 |
|
ip0l.z |
|- Z = ( 0g ` F ) |
| 5 |
|
ip0l.o |
|- .0. = ( 0g ` W ) |
| 6 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
| 7 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
| 8 |
3 5
|
grpidcl |
|- ( W e. Grp -> .0. e. V ) |
| 9 |
6 7 8
|
3syl |
|- ( W e. PreHil -> .0. e. V ) |
| 10 |
9
|
adantr |
|- ( ( W e. PreHil /\ A e. V ) -> .0. e. V ) |
| 11 |
|
oveq1 |
|- ( x = .0. -> ( x ., A ) = ( .0. ., A ) ) |
| 12 |
|
eqid |
|- ( x e. V |-> ( x ., A ) ) = ( x e. V |-> ( x ., A ) ) |
| 13 |
|
ovex |
|- ( .0. ., A ) e. _V |
| 14 |
11 12 13
|
fvmpt |
|- ( .0. e. V -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = ( .0. ., A ) ) |
| 15 |
10 14
|
syl |
|- ( ( W e. PreHil /\ A e. V ) -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = ( .0. ., A ) ) |
| 16 |
1 2 3 12
|
phllmhm |
|- ( ( W e. PreHil /\ A e. V ) -> ( x e. V |-> ( x ., A ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
| 17 |
|
lmghm |
|- ( ( x e. V |-> ( x ., A ) ) e. ( W LMHom ( ringLMod ` F ) ) -> ( x e. V |-> ( x ., A ) ) e. ( W GrpHom ( ringLMod ` F ) ) ) |
| 18 |
|
rlm0 |
|- ( 0g ` F ) = ( 0g ` ( ringLMod ` F ) ) |
| 19 |
4 18
|
eqtri |
|- Z = ( 0g ` ( ringLMod ` F ) ) |
| 20 |
5 19
|
ghmid |
|- ( ( x e. V |-> ( x ., A ) ) e. ( W GrpHom ( ringLMod ` F ) ) -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = Z ) |
| 21 |
16 17 20
|
3syl |
|- ( ( W e. PreHil /\ A e. V ) -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = Z ) |
| 22 |
15 21
|
eqtr3d |
|- ( ( W e. PreHil /\ A e. V ) -> ( .0. ., A ) = Z ) |