Metamath Proof Explorer


Theorem ipeq0

Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. (Contributed by NM, 24-Jan-2008) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ip0l.z Z = 0 F
ip0l.o 0 ˙ = 0 W
Assertion ipeq0 W PreHil A V A , ˙ A = Z A = 0 ˙

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ip0l.z Z = 0 F
5 ip0l.o 0 ˙ = 0 W
6 eqid * F = * F
7 3 1 2 5 6 4 isphl W PreHil W LVec F *-Ring x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V x , ˙ y * F = y , ˙ x
8 7 simp3bi W PreHil x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V x , ˙ y * F = y , ˙ x
9 simp2 y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V x , ˙ y * F = y , ˙ x x , ˙ x = Z x = 0 ˙
10 9 ralimi x V y V y , ˙ x W LMHom ringLMod F x , ˙ x = Z x = 0 ˙ y V x , ˙ y * F = y , ˙ x x V x , ˙ x = Z x = 0 ˙
11 8 10 syl W PreHil x V x , ˙ x = Z x = 0 ˙
12 oveq12 x = A x = A x , ˙ x = A , ˙ A
13 12 anidms x = A x , ˙ x = A , ˙ A
14 13 eqeq1d x = A x , ˙ x = Z A , ˙ A = Z
15 eqeq1 x = A x = 0 ˙ A = 0 ˙
16 14 15 imbi12d x = A x , ˙ x = Z x = 0 ˙ A , ˙ A = Z A = 0 ˙
17 16 rspccva x V x , ˙ x = Z x = 0 ˙ A V A , ˙ A = Z A = 0 ˙
18 11 17 sylan W PreHil A V A , ˙ A = Z A = 0 ˙
19 1 2 3 4 5 ip0l W PreHil A V 0 ˙ , ˙ A = Z
20 oveq1 A = 0 ˙ A , ˙ A = 0 ˙ , ˙ A
21 20 eqeq1d A = 0 ˙ A , ˙ A = Z 0 ˙ , ˙ A = Z
22 19 21 syl5ibrcom W PreHil A V A = 0 ˙ A , ˙ A = Z
23 18 22 impbid W PreHil A V A , ˙ A = Z A = 0 ˙