Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. (Contributed by NM, 24-Jan-2008) (Revised by Mario Carneiro, 7-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | phlsrng.f | |
|
phllmhm.h | |
||
phllmhm.v | |
||
ip0l.z | |
||
ip0l.o | |
||
Assertion | ipeq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | |
|
2 | phllmhm.h | |
|
3 | phllmhm.v | |
|
4 | ip0l.z | |
|
5 | ip0l.o | |
|
6 | eqid | |
|
7 | 3 1 2 5 6 4 | isphl | |
8 | 7 | simp3bi | |
9 | simp2 | |
|
10 | 9 | ralimi | |
11 | 8 10 | syl | |
12 | oveq12 | |
|
13 | 12 | anidms | |
14 | 13 | eqeq1d | |
15 | eqeq1 | |
|
16 | 14 15 | imbi12d | |
17 | 16 | rspccva | |
18 | 11 17 | sylan | |
19 | 1 2 3 4 5 | ip0l | |
20 | oveq1 | |
|
21 | 20 | eqeq1d | |
22 | 19 21 | syl5ibrcom | |
23 | 18 22 | impbid | |