Metamath Proof Explorer


Theorem ipeq0

Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. (Contributed by NM, 24-Jan-2008) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ip0l.z Z=0F
ip0l.o 0˙=0W
Assertion ipeq0 WPreHilAVA,˙A=ZA=0˙

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ip0l.z Z=0F
5 ip0l.o 0˙=0W
6 eqid *F=*F
7 3 1 2 5 6 4 isphl WPreHilWLVecF*-RingxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yVx,˙y*F=y,˙x
8 7 simp3bi WPreHilxVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yVx,˙y*F=y,˙x
9 simp2 yVy,˙xWLMHomringLModFx,˙x=Zx=0˙yVx,˙y*F=y,˙xx,˙x=Zx=0˙
10 9 ralimi xVyVy,˙xWLMHomringLModFx,˙x=Zx=0˙yVx,˙y*F=y,˙xxVx,˙x=Zx=0˙
11 8 10 syl WPreHilxVx,˙x=Zx=0˙
12 oveq12 x=Ax=Ax,˙x=A,˙A
13 12 anidms x=Ax,˙x=A,˙A
14 13 eqeq1d x=Ax,˙x=ZA,˙A=Z
15 eqeq1 x=Ax=0˙A=0˙
16 14 15 imbi12d x=Ax,˙x=Zx=0˙A,˙A=ZA=0˙
17 16 rspccva xVx,˙x=Zx=0˙AVA,˙A=ZA=0˙
18 11 17 sylan WPreHilAVA,˙A=ZA=0˙
19 1 2 3 4 5 ip0l WPreHilAV0˙,˙A=Z
20 oveq1 A=0˙A,˙A=0˙,˙A
21 20 eqeq1d A=0˙A,˙A=Z0˙,˙A=Z
22 19 21 syl5ibrcom WPreHilAVA=0˙A,˙A=Z
23 18 22 impbid WPreHilAVA,˙A=ZA=0˙