| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phssip.x |
|
| 2 |
|
phssip.s |
|
| 3 |
|
phssip.i |
|
| 4 |
|
phssip.p |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 6 4
|
ipffval |
|
| 8 |
|
phllmod |
|
| 9 |
2
|
lsssubg |
|
| 10 |
8 9
|
sylan |
|
| 11 |
1
|
subgbas |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
eqidd |
|
| 14 |
12 12 13
|
mpoeq123dv |
|
| 15 |
|
eqid |
|
| 16 |
15
|
subgss |
|
| 17 |
10 16
|
syl |
|
| 18 |
|
resmpo |
|
| 19 |
17 17 18
|
syl2anc |
|
| 20 |
|
eqid |
|
| 21 |
1 20 6
|
ssipeq |
|
| 22 |
21
|
adantl |
|
| 23 |
22
|
oveqd |
|
| 24 |
23
|
mpoeq3dv |
|
| 25 |
14 19 24
|
3eqtr4rd |
|
| 26 |
7 25
|
eqtrid |
|
| 27 |
15 20 3
|
ipffval |
|
| 28 |
27
|
a1i |
|
| 29 |
28
|
reseq1d |
|
| 30 |
26 29
|
eqtr4d |
|