Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lsssubg.s | |
|
Assertion | lsssubg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsssubg.s | |
|
2 | eqid | |
|
3 | 2 1 | lssss | |
4 | 3 | adantl | |
5 | 1 | lssn0 | |
6 | 5 | adantl | |
7 | eqid | |
|
8 | 7 1 | lssvacl | |
9 | 8 | anassrs | |
10 | 9 | ralrimiva | |
11 | eqid | |
|
12 | 1 11 | lssvnegcl | |
13 | 12 | 3expa | |
14 | 10 13 | jca | |
15 | 14 | ralrimiva | |
16 | lmodgrp | |
|
17 | 16 | adantr | |
18 | 2 7 11 | issubg2 | |
19 | 17 18 | syl | |
20 | 4 6 15 19 | mpbir3and | |