Metamath Proof Explorer


Theorem lsssubg

Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014)

Ref Expression
Hypothesis lsssubg.s S=LSubSpW
Assertion lsssubg WLModUSUSubGrpW

Proof

Step Hyp Ref Expression
1 lsssubg.s S=LSubSpW
2 eqid BaseW=BaseW
3 2 1 lssss USUBaseW
4 3 adantl WLModUSUBaseW
5 1 lssn0 USU
6 5 adantl WLModUSU
7 eqid +W=+W
8 7 1 lssvacl WLModUSxUyUx+WyU
9 8 anassrs WLModUSxUyUx+WyU
10 9 ralrimiva WLModUSxUyUx+WyU
11 eqid invgW=invgW
12 1 11 lssvnegcl WLModUSxUinvgWxU
13 12 3expa WLModUSxUinvgWxU
14 10 13 jca WLModUSxUyUx+WyUinvgWxU
15 14 ralrimiva WLModUSxUyUx+WyUinvgWxU
16 lmodgrp WLModWGrp
17 16 adantr WLModUSWGrp
18 2 7 11 issubg2 WGrpUSubGrpWUBaseWUxUyUx+WyUinvgWxU
19 17 18 syl WLModUSUSubGrpWUBaseWUxUyUx+WyUinvgWxU
20 4 6 15 19 mpbir3and WLModUSUSubGrpW