Step |
Hyp |
Ref |
Expression |
1 |
|
lsssubg.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
3 |
2 1
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
5 |
1
|
lssn0 |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ≠ ∅ ) |
6 |
5
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ≠ ∅ ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
8 |
7 1
|
lssvacl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
9 |
8
|
anassrs |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
10 |
9
|
ralrimiva |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
11 |
|
eqid |
⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) |
12 |
1 11
|
lssvnegcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) |
13 |
12
|
3expa |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) |
14 |
10 13
|
jca |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) ) |
15 |
14
|
ralrimiva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑈 ( ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) ) |
16 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
17 |
16
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ Grp ) |
18 |
2 7 11
|
issubg2 |
⊢ ( 𝑊 ∈ Grp → ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) ) ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) ) ) ) |
20 |
4 6 15 19
|
mpbir3and |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |