Metamath Proof Explorer


Theorem lsssubg

Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014)

Ref Expression
Hypothesis lsssubg.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lsssubg ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 lsssubg.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
3 2 1 lssss ( 𝑈𝑆𝑈 ⊆ ( Base ‘ 𝑊 ) )
4 3 adantl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) )
5 1 lssn0 ( 𝑈𝑆𝑈 ≠ ∅ )
6 5 adantl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 𝑈 ≠ ∅ )
7 eqid ( +g𝑊 ) = ( +g𝑊 )
8 7 1 lssvacl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑥𝑈𝑦𝑈 ) ) → ( 𝑥 ( +g𝑊 ) 𝑦 ) ∈ 𝑈 )
9 8 anassrs ( ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ 𝑥𝑈 ) ∧ 𝑦𝑈 ) → ( 𝑥 ( +g𝑊 ) 𝑦 ) ∈ 𝑈 )
10 9 ralrimiva ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ 𝑥𝑈 ) → ∀ 𝑦𝑈 ( 𝑥 ( +g𝑊 ) 𝑦 ) ∈ 𝑈 )
11 eqid ( invg𝑊 ) = ( invg𝑊 )
12 1 11 lssvnegcl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈 ) → ( ( invg𝑊 ) ‘ 𝑥 ) ∈ 𝑈 )
13 12 3expa ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ 𝑥𝑈 ) → ( ( invg𝑊 ) ‘ 𝑥 ) ∈ 𝑈 )
14 10 13 jca ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ 𝑥𝑈 ) → ( ∀ 𝑦𝑈 ( 𝑥 ( +g𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) )
15 14 ralrimiva ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → ∀ 𝑥𝑈 ( ∀ 𝑦𝑈 ( 𝑥 ( +g𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) )
16 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
17 16 adantr ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 𝑊 ∈ Grp )
18 2 7 11 issubg2 ( 𝑊 ∈ Grp → ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( ∀ 𝑦𝑈 ( 𝑥 ( +g𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) ) ) )
19 17 18 syl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( ∀ 𝑦𝑈 ( 𝑥 ( +g𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) ) ) )
20 4 6 15 19 mpbir3and ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) )