| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							issubg2.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							issubg2.p | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							issubg2.i | 
							⊢ 𝐼  =  ( invg ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								1
							 | 
							subgss | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ⊆  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ↾s  𝑆 )  =  ( 𝐺  ↾s  𝑆 )  | 
						
						
							| 6 | 
							
								5
							 | 
							subgbas | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) )  | 
						
						
							| 7 | 
							
								5
							 | 
							subggrp | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ↾s  𝑆 )  ∈  Grp )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝐺  ↾s  𝑆 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							grpbn0 | 
							⊢ ( ( 𝐺  ↾s  𝑆 )  ∈  Grp  →  ( Base ‘ ( 𝐺  ↾s  𝑆 ) )  ≠  ∅ )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							syl | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( Base ‘ ( 𝐺  ↾s  𝑆 ) )  ≠  ∅ )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							eqnetrd | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ≠  ∅ )  | 
						
						
							| 12 | 
							
								2
							 | 
							subgcl | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 )  | 
						
						
							| 13 | 
							
								12
							 | 
							3expa | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑦  ∈  𝑆 )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 )  | 
						
						
							| 14 | 
							
								13
							 | 
							ralrimiva | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝑆 )  →  ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  | 
						
						
							| 15 | 
							
								3
							 | 
							subginvcl | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							jca | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝑆 )  →  ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							ralrimiva | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) )  | 
						
						
							| 18 | 
							
								4 11 17
							 | 
							3jca | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  𝐺  ∈  Grp )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  𝑆  ⊆  𝐵 )  | 
						
						
							| 21 | 
							
								5 1
							 | 
							ressbas2 | 
							⊢ ( 𝑆  ⊆  𝐵  →  𝑆  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  𝑆  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							fvex | 
							⊢ ( Base ‘ ( 𝐺  ↾s  𝑆 ) )  ∈  V  | 
						
						
							| 24 | 
							
								22 23
							 | 
							eqeltrdi | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  𝑆  ∈  V )  | 
						
						
							| 25 | 
							
								5 2
							 | 
							ressplusg | 
							⊢ ( 𝑆  ∈  V  →   +   =  ( +g ‘ ( 𝐺  ↾s  𝑆 ) ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →   +   =  ( +g ‘ ( 𝐺  ↾s  𝑆 ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 )  →  ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  | 
						
						
							| 29 | 
							
								28
							 | 
							ralimi | 
							⊢ ( ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  | 
						
						
							| 31 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑢  →  ( 𝑥  +  𝑦 )  =  ( 𝑢  +  𝑦 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							eleq1d | 
							⊢ ( 𝑥  =  𝑢  →  ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑢  +  𝑦 )  ∈  𝑆 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  𝑣  →  ( 𝑢  +  𝑦 )  =  ( 𝑢  +  𝑣 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							eleq1d | 
							⊢ ( 𝑦  =  𝑣  →  ( ( 𝑢  +  𝑦 )  ∈  𝑆  ↔  ( 𝑢  +  𝑣 )  ∈  𝑆 ) )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							rspc2v | 
							⊢ ( ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 )  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  →  ( 𝑢  +  𝑣 )  ∈  𝑆 ) )  | 
						
						
							| 36 | 
							
								30 35
							 | 
							syl5com | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  ( ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 )  →  ( 𝑢  +  𝑣 )  ∈  𝑆 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							3impib | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 )  →  ( 𝑢  +  𝑣 )  ∈  𝑆 )  | 
						
						
							| 38 | 
							
								20
							 | 
							sseld | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  ( 𝑢  ∈  𝑆  →  𝑢  ∈  𝐵 ) )  | 
						
						
							| 39 | 
							
								20
							 | 
							sseld | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  ( 𝑣  ∈  𝑆  →  𝑣  ∈  𝐵 ) )  | 
						
						
							| 40 | 
							
								20
							 | 
							sseld | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  ( 𝑤  ∈  𝑆  →  𝑤  ∈  𝐵 ) )  | 
						
						
							| 41 | 
							
								38 39 40
							 | 
							3anim123d | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  ( ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆  ∧  𝑤  ∈  𝑆 )  →  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							imp | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆  ∧  𝑤  ∈  𝑆 ) )  →  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  | 
						
						
							| 43 | 
							
								1 2
							 | 
							grpass | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢  +  𝑣 )  +  𝑤 )  =  ( 𝑢  +  ( 𝑣  +  𝑤 ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantlr | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢  +  𝑣 )  +  𝑤 )  =  ( 𝑢  +  ( 𝑣  +  𝑤 ) ) )  | 
						
						
							| 45 | 
							
								42 44
							 | 
							syldan | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆  ∧  𝑤  ∈  𝑆 ) )  →  ( ( 𝑢  +  𝑣 )  +  𝑤 )  =  ( 𝑢  +  ( 𝑣  +  𝑤 ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  𝑆  ≠  ∅ )  | 
						
						
							| 47 | 
							
								
							 | 
							n0 | 
							⊢ ( 𝑆  ≠  ∅  ↔  ∃ 𝑢 𝑢  ∈  𝑆 )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							sylib | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  ∃ 𝑢 𝑢  ∈  𝑆 )  | 
						
						
							| 49 | 
							
								20
							 | 
							sselda | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  𝑢  ∈  𝑆 )  →  𝑢  ∈  𝐵 )  | 
						
						
							| 50 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 )  | 
						
						
							| 51 | 
							
								1 2 50 3
							 | 
							grplinv | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑢  ∈  𝐵 )  →  ( ( 𝐼 ‘ 𝑢 )  +  𝑢 )  =  ( 0g ‘ 𝐺 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantlr | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  𝑢  ∈  𝐵 )  →  ( ( 𝐼 ‘ 𝑢 )  +  𝑢 )  =  ( 0g ‘ 𝐺 ) )  | 
						
						
							| 53 | 
							
								49 52
							 | 
							syldan | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  𝑢  ∈  𝑆 )  →  ( ( 𝐼 ‘ 𝑢 )  +  𝑢 )  =  ( 0g ‘ 𝐺 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 )  →  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 )  | 
						
						
							| 55 | 
							
								54
							 | 
							ralimi | 
							⊢ ( ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 )  →  ∀ 𝑥  ∈  𝑆 ( 𝐼 ‘ 𝑥 )  ∈  𝑆 )  | 
						
						
							| 56 | 
							
								27 55
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  ∀ 𝑥  ∈  𝑆 ( 𝐼 ‘ 𝑥 )  ∈  𝑆 )  | 
						
						
							| 57 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑢  →  ( 𝐼 ‘ 𝑥 )  =  ( 𝐼 ‘ 𝑢 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							eleq1d | 
							⊢ ( 𝑥  =  𝑢  →  ( ( 𝐼 ‘ 𝑥 )  ∈  𝑆  ↔  ( 𝐼 ‘ 𝑢 )  ∈  𝑆 ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑥  ∈  𝑆 ( 𝐼 ‘ 𝑥 )  ∈  𝑆  ∧  𝑢  ∈  𝑆 )  →  ( 𝐼 ‘ 𝑢 )  ∈  𝑆 )  | 
						
						
							| 60 | 
							
								56 59
							 | 
							sylan | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  𝑢  ∈  𝑆 )  →  ( 𝐼 ‘ 𝑢 )  ∈  𝑆 )  | 
						
						
							| 61 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  𝑢  ∈  𝑆 )  →  𝑢  ∈  𝑆 )  | 
						
						
							| 62 | 
							
								30
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  𝑢  ∈  𝑆 )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  | 
						
						
							| 63 | 
							
								
							 | 
							ovrspc2v | 
							⊢ ( ( ( ( 𝐼 ‘ 𝑢 )  ∈  𝑆  ∧  𝑢  ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  ( ( 𝐼 ‘ 𝑢 )  +  𝑢 )  ∈  𝑆 )  | 
						
						
							| 64 | 
							
								60 61 62 63
							 | 
							syl21anc | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  𝑢  ∈  𝑆 )  →  ( ( 𝐼 ‘ 𝑢 )  +  𝑢 )  ∈  𝑆 )  | 
						
						
							| 65 | 
							
								53 64
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  𝑢  ∈  𝑆 )  →  ( 0g ‘ 𝐺 )  ∈  𝑆 )  | 
						
						
							| 66 | 
							
								48 65
							 | 
							exlimddv | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  ( 0g ‘ 𝐺 )  ∈  𝑆 )  | 
						
						
							| 67 | 
							
								1 2 50
							 | 
							grplid | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑢  ∈  𝐵 )  →  ( ( 0g ‘ 𝐺 )  +  𝑢 )  =  𝑢 )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantlr | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  𝑢  ∈  𝐵 )  →  ( ( 0g ‘ 𝐺 )  +  𝑢 )  =  𝑢 )  | 
						
						
							| 69 | 
							
								49 68
							 | 
							syldan | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  ∧  𝑢  ∈  𝑆 )  →  ( ( 0g ‘ 𝐺 )  +  𝑢 )  =  𝑢 )  | 
						
						
							| 70 | 
							
								22 26 37 45 66 69 60 53
							 | 
							isgrpd | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  ( 𝐺  ↾s  𝑆 )  ∈  Grp )  | 
						
						
							| 71 | 
							
								1
							 | 
							issubg | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝐺  ∈  Grp  ∧  𝑆  ⊆  𝐵  ∧  ( 𝐺  ↾s  𝑆 )  ∈  Grp ) )  | 
						
						
							| 72 | 
							
								19 20 70 71
							 | 
							syl3anbrc | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							ex | 
							⊢ ( 𝐺  ∈  Grp  →  ( ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) )  | 
						
						
							| 74 | 
							
								18 73
							 | 
							impbid2 | 
							⊢ ( 𝐺  ∈  Grp  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ∧  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) ) ) )  |