Metamath Proof Explorer


Theorem eqnetrd

Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012)

Ref Expression
Hypotheses eqnetrd.1 ( 𝜑𝐴 = 𝐵 )
eqnetrd.2 ( 𝜑𝐵𝐶 )
Assertion eqnetrd ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqnetrd.1 ( 𝜑𝐴 = 𝐵 )
2 eqnetrd.2 ( 𝜑𝐵𝐶 )
3 1 neeq1d ( 𝜑 → ( 𝐴𝐶𝐵𝐶 ) )
4 2 3 mpbird ( 𝜑𝐴𝐶 )