Metamath Proof Explorer


Theorem eqnetrd

Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012)

Ref Expression
Hypotheses eqnetrd.1 φ A = B
eqnetrd.2 φ B C
Assertion eqnetrd φ A C

Proof

Step Hyp Ref Expression
1 eqnetrd.1 φ A = B
2 eqnetrd.2 φ B C
3 1 neeq1d φ A C B C
4 2 3 mpbird φ A C