Metamath Proof Explorer


Theorem eqnetrrd

Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012)

Ref Expression
Hypotheses eqnetrrd.1 φA=B
eqnetrrd.2 φAC
Assertion eqnetrrd φBC

Proof

Step Hyp Ref Expression
1 eqnetrrd.1 φA=B
2 eqnetrrd.2 φAC
3 1 eqcomd φB=A
4 3 2 eqnetrd φBC