Metamath Proof Explorer


Theorem eqnetrrd

Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012)

Ref Expression
Hypotheses eqnetrrd.1 ( 𝜑𝐴 = 𝐵 )
eqnetrrd.2 ( 𝜑𝐴𝐶 )
Assertion eqnetrrd ( 𝜑𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 eqnetrrd.1 ( 𝜑𝐴 = 𝐵 )
2 eqnetrrd.2 ( 𝜑𝐴𝐶 )
3 1 eqcomd ( 𝜑𝐵 = 𝐴 )
4 3 2 eqnetrd ( 𝜑𝐵𝐶 )