Metamath Proof Explorer
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012)
|
|
Ref |
Expression |
|
Hypotheses |
eqnetrrd.1 |
|- ( ph -> A = B ) |
|
|
eqnetrrd.2 |
|- ( ph -> A =/= C ) |
|
Assertion |
eqnetrrd |
|- ( ph -> B =/= C ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqnetrrd.1 |
|- ( ph -> A = B ) |
2 |
|
eqnetrrd.2 |
|- ( ph -> A =/= C ) |
3 |
1
|
eqcomd |
|- ( ph -> B = A ) |
4 |
3 2
|
eqnetrd |
|- ( ph -> B =/= C ) |