Metamath Proof Explorer


Theorem neeq1d

Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999) (Proof shortened by Wolf Lammen, 19-Nov-2019)

Ref Expression
Hypothesis neeq1d.1 φA=B
Assertion neeq1d φACBC

Proof

Step Hyp Ref Expression
1 neeq1d.1 φA=B
2 1 eqeq1d φA=CB=C
3 2 necon3bid φACBC