Step |
Hyp |
Ref |
Expression |
1 |
|
lssvacl.p |
⊢ + = ( +g ‘ 𝑊 ) |
2 |
|
lssvacl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
5 |
4 2
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
6 |
5
|
ad2ant2lr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
10 |
4 7 8 9
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
11 |
3 6 10
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
12 |
11
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + 𝑌 ) = ( 𝑋 + 𝑌 ) ) |
13 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
15 |
7 14 9
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
17 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑋 ∈ 𝑈 ) |
18 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑌 ∈ 𝑈 ) |
19 |
7 14 1 8 2
|
lsscl |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + 𝑌 ) ∈ 𝑈 ) |
20 |
13 16 17 18 19
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + 𝑌 ) ∈ 𝑈 ) |
21 |
12 20
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑈 ) |