Metamath Proof Explorer


Theorem lssvscl

Description: Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lssvscl.f 𝐹 = ( Scalar ‘ 𝑊 )
lssvscl.t · = ( ·𝑠𝑊 )
lssvscl.b 𝐵 = ( Base ‘ 𝐹 )
lssvscl.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lssvscl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝐵𝑌𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 lssvscl.f 𝐹 = ( Scalar ‘ 𝑊 )
2 lssvscl.t · = ( ·𝑠𝑊 )
3 lssvscl.b 𝐵 = ( Base ‘ 𝐹 )
4 lssvscl.s 𝑆 = ( LSubSp ‘ 𝑊 )
5 simpll ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝐵𝑌𝑈 ) ) → 𝑊 ∈ LMod )
6 simprl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝐵𝑌𝑈 ) ) → 𝑋𝐵 )
7 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
8 7 4 lssel ( ( 𝑈𝑆𝑌𝑈 ) → 𝑌 ∈ ( Base ‘ 𝑊 ) )
9 8 ad2ant2l ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝐵𝑌𝑈 ) ) → 𝑌 ∈ ( Base ‘ 𝑊 ) )
10 7 1 2 3 lmodvscl ( ( 𝑊 ∈ LMod ∧ 𝑋𝐵𝑌 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) )
11 5 6 9 10 syl3anc ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝐵𝑌𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) )
12 eqid ( +g𝑊 ) = ( +g𝑊 )
13 eqid ( 0g𝑊 ) = ( 0g𝑊 )
14 7 12 13 lmod0vrid ( ( 𝑊 ∈ LMod ∧ ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑋 · 𝑌 ) ( +g𝑊 ) ( 0g𝑊 ) ) = ( 𝑋 · 𝑌 ) )
15 5 11 14 syl2anc ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝐵𝑌𝑈 ) ) → ( ( 𝑋 · 𝑌 ) ( +g𝑊 ) ( 0g𝑊 ) ) = ( 𝑋 · 𝑌 ) )
16 simplr ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝐵𝑌𝑈 ) ) → 𝑈𝑆 )
17 simprr ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝐵𝑌𝑈 ) ) → 𝑌𝑈 )
18 13 4 lss0cl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → ( 0g𝑊 ) ∈ 𝑈 )
19 18 adantr ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝐵𝑌𝑈 ) ) → ( 0g𝑊 ) ∈ 𝑈 )
20 1 3 12 2 4 lsscl ( ( 𝑈𝑆 ∧ ( 𝑋𝐵𝑌𝑈 ∧ ( 0g𝑊 ) ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) ( +g𝑊 ) ( 0g𝑊 ) ) ∈ 𝑈 )
21 16 6 17 19 20 syl13anc ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝐵𝑌𝑈 ) ) → ( ( 𝑋 · 𝑌 ) ( +g𝑊 ) ( 0g𝑊 ) ) ∈ 𝑈 )
22 15 21 eqeltrrd ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝐵𝑌𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 )