Metamath Proof Explorer


Theorem lss0cl

Description: The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lss0cl.z 0 = ( 0g𝑊 )
lss0cl.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lss0cl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 0𝑈 )

Proof

Step Hyp Ref Expression
1 lss0cl.z 0 = ( 0g𝑊 )
2 lss0cl.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 2 lssn0 ( 𝑈𝑆𝑈 ≠ ∅ )
4 n0 ( 𝑈 ≠ ∅ ↔ ∃ 𝑥 𝑥𝑈 )
5 3 4 sylib ( 𝑈𝑆 → ∃ 𝑥 𝑥𝑈 )
6 5 adantl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → ∃ 𝑥 𝑥𝑈 )
7 simp1 ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈 ) → 𝑊 ∈ LMod )
8 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
9 8 2 lssel ( ( 𝑈𝑆𝑥𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
10 9 3adant1 ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
11 eqid ( -g𝑊 ) = ( -g𝑊 )
12 8 1 11 lmodsubid ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( -g𝑊 ) 𝑥 ) = 0 )
13 7 10 12 syl2anc ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈 ) → ( 𝑥 ( -g𝑊 ) 𝑥 ) = 0 )
14 11 2 lssvsubcl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑥𝑈𝑥𝑈 ) ) → ( 𝑥 ( -g𝑊 ) 𝑥 ) ∈ 𝑈 )
15 14 anabsan2 ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ 𝑥𝑈 ) → ( 𝑥 ( -g𝑊 ) 𝑥 ) ∈ 𝑈 )
16 15 3impa ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈 ) → ( 𝑥 ( -g𝑊 ) 𝑥 ) ∈ 𝑈 )
17 13 16 eqeltrrd ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈 ) → 0𝑈 )
18 17 3expia ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → ( 𝑥𝑈0𝑈 ) )
19 18 exlimdv ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → ( ∃ 𝑥 𝑥𝑈0𝑈 ) )
20 6 19 mpd ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 0𝑈 )