| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lss0cl.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 2 |  | lss0cl.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 | 2 | lssn0 | ⊢ ( 𝑈  ∈  𝑆  →  𝑈  ≠  ∅ ) | 
						
							| 4 |  | n0 | ⊢ ( 𝑈  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝑈 ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( 𝑈  ∈  𝑆  →  ∃ 𝑥 𝑥  ∈  𝑈 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  →  ∃ 𝑥 𝑥  ∈  𝑈 ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆  ∧  𝑥  ∈  𝑈 )  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 9 | 8 2 | lssel | ⊢ ( ( 𝑈  ∈  𝑆  ∧  𝑥  ∈  𝑈 )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 10 | 9 | 3adant1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆  ∧  𝑥  ∈  𝑈 )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 11 |  | eqid | ⊢ ( -g ‘ 𝑊 )  =  ( -g ‘ 𝑊 ) | 
						
							| 12 | 8 1 11 | lmodsubid | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 )  =   0  ) | 
						
							| 13 | 7 10 12 | syl2anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆  ∧  𝑥  ∈  𝑈 )  →  ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 )  =   0  ) | 
						
							| 14 | 11 2 | lssvsubcl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑥  ∈  𝑈 ) )  →  ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 )  ∈  𝑈 ) | 
						
							| 15 | 14 | anabsan2 | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  𝑈 )  →  ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 )  ∈  𝑈 ) | 
						
							| 16 | 15 | 3impa | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆  ∧  𝑥  ∈  𝑈 )  →  ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 )  ∈  𝑈 ) | 
						
							| 17 | 13 16 | eqeltrrd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆  ∧  𝑥  ∈  𝑈 )  →   0   ∈  𝑈 ) | 
						
							| 18 | 17 | 3expia | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  →  ( 𝑥  ∈  𝑈  →   0   ∈  𝑈 ) ) | 
						
							| 19 | 18 | exlimdv | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  →  ( ∃ 𝑥 𝑥  ∈  𝑈  →   0   ∈  𝑈 ) ) | 
						
							| 20 | 6 19 | mpd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  →   0   ∈  𝑈 ) |